File size: 17,528 Bytes
b5712a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
# eval.py
import sys
import os
import time
import json
import subprocess
import tempfile
from pathlib import Path
from datasets import load_dataset # Hugging Face datasets library
# --- Configuration ---
DATASET_NAME = "kostis-init/CP-Bench"
# Column names in the Hugging Face dataset for problem identifier and model script
PROBLEM_NAME_COLUMN = "id"
MODEL_CODE_COLUMN = "model"
# Timeout for running individual model scripts (both generated and modified ground-truth)
SCRIPT_EXECUTION_TIMEOUT = 60 # seconds
def extract_json_from_string(text_output: str):
"""
Attempts to find and parse the first valid JSON object or array from a string.
Handles cases where JSON is preceded or followed by non-JSON text.
"""
idx = 0
while idx < len(text_output):
# Find the next potential start of a JSON structure
start_brace = text_output.find('{', idx)
start_bracket = text_output.find('[', idx)
if start_brace == -1 and start_bracket == -1:
# No more '{' or '[' found in the rest of the string
return None
# Determine the actual starting character for this attempt
if start_brace != -1 and (start_bracket == -1 or start_brace < start_bracket):
json_start_index = start_brace
else:
json_start_index = start_bracket
potential_json_segment = text_output[json_start_index:]
try:
# Use raw_decode to parse the first valid JSON object from the segment
decoder = json.JSONDecoder()
json_obj, end_index_in_segment = decoder.raw_decode(potential_json_segment)
# Successfully parsed a JSON object
return json_obj
except json.JSONDecodeError:
# This segment (starting at json_start_index) wasn't a valid JSON.
# Advance the search index past the character that caused the current attempt.
idx = json_start_index + 1
return None # No valid JSON found in the entire string
def run_instance(instance_path_str: str,
timeout: int = SCRIPT_EXECUTION_TIMEOUT): # SCRIPT_EXECUTION_TIMEOUT should be defined
"""Run the instance file and robustly capture the JSON output."""
command = [sys.executable, instance_path_str]
instance_name = Path(instance_path_str).name
try:
result = subprocess.run(command, capture_output=True, text=True, timeout=timeout, encoding='utf-8',
errors='replace')
# Check return code first
if result.returncode != 0:
# Log stderr for debugging if the script itself failed
error_message = result.stderr[:500].strip() if result.stderr else "<No stderr>"
print(f" ERROR: Running {instance_name} (Return Code: {result.returncode}): {error_message}", flush=True)
return None
# Attempt to extract JSON from stdout
stdout_text = result.stdout
if not stdout_text or not stdout_text.strip():
print(f" ERROR: No stdout from {instance_name}.", flush=True)
return None
solution = extract_json_from_string(stdout_text)
if solution is None:
# Be more verbose if JSON extraction fails
abbreviated_stdout = stdout_text.replace('\n', '\\n')[:300] # Show newlines as \n for brevity
print(
f" ERROR: Could not extract valid JSON from {instance_name}. Raw stdout (abbreviated): '{abbreviated_stdout}...'",
flush=True)
return None
return solution
except subprocess.TimeoutExpired:
print(f" ERROR: Timeout running {instance_name} (>{timeout}s)", flush=True)
return None
except Exception as e:
print(f" ERROR: Unexpected error running {instance_name}: {e}", flush=True)
return None
def add_constraints_as_string(solution):
"""Generate constraints as a string to be added to the original script."""
constraints = ""
if solution: # Ensure solution is not None
for key, value in solution.items():
# Basic escaping for string values if they occur, though typically solutions are numeric/boolean
if isinstance(value, str):
constraints += f"\nmodel += ({key} == \"{value}\")"
else:
constraints += f"\nmodel += ({key} == {value})"
return constraints
def get_modified_script(script_content, solution):
"""Add constraints to the script content and self-consistency checks."""
constraints_str = add_constraints_as_string(solution)
modified_script = f"{script_content}\n{constraints_str}"
modified_script += """
# --- Self-consistency check appended by eval.py ---
# Print the absolute path of the current directory along with the script name
import os
# print(f"DEBUG: Running modified script: {os.path.abspath(__file__)}") # Optional debug
# Keep old objective
old_objective_value = None
objective_defined = False
if 'model' in locals() and hasattr(model, 'objective_value') and callable(model.objective_value):
try:
# This block assumes 'model' is the CPMpy model object or similar
# Check if an objective is set. Some libraries might not have a direct 'objective_is_min/max'
# or might raise an error if objective_value() is called on an unsolved/unformulated objective.
# This part might need adjustment based on the specific modeling library used in CP-Bench.
# For now, we'll try to get it and catch errors.
# A more robust way might be to inspect model.objective_
if hasattr(model, '_objective_value'): # cpmpy specific check if objective was set
if model._objective_value is not None: # cpmpy does not have objective_is_min
objective_defined = True
old_objective_value = model.objective_value()
except Exception as e_obj_check:
# print(f"DEBUG: Could not retrieve initial objective value: {e_obj_check}")
pass # Objective might not be set or model not solved yet.
# Check self-consistency
solved_ok = False
try:
if 'model' in locals() and hasattr(model, 'solve') and callable(model.solve):
solved_ok = model.solve()
else:
print('ERROR: Model object not found or does not have a solve() method.')
except Exception as e_solve:
print(f'ERROR: Exception during model.solve(): {e_solve}')
solved_ok = False # Ensure it's false on exception
if not solved_ok:
print('EVAL_OUTPUT: CONSISTENCY_CHECK_RESULT=UNSATISFIABLE')
else:
print('EVAL_OUTPUT: CONSISTENCY_CHECK_RESULT=SUCCESS')
# Check if the objective value is the same
if not objective_defined:
print('EVAL_OUTPUT: OBJECTIVE_CHECK_RESULT=NO_OBJECTIVE_DEFINED')
else:
try:
current_objective_value = model.objective_value()
# Handle potential floating point inaccuracies if objectives can be floats
if isinstance(old_objective_value, float) or isinstance(current_objective_value, float):
if abs(current_objective_value - old_objective_value) < 1e-6: # Tolerance for float comparison
print('EVAL_OUTPUT: OBJECTIVE_CHECK_RESULT=CONSISTENT')
else:
print(f'EVAL_OUTPUT: OBJECTIVE_CHECK_RESULT=CHANGED (Old: {old_objective_value}, New: {current_objective_value})')
elif current_objective_value != old_objective_value: # Integer comparison
print(f'EVAL_OUTPUT: OBJECTIVE_CHECK_RESULT=CHANGED (Old: {old_objective_value}, New: {current_objective_value})')
else:
print('EVAL_OUTPUT: OBJECTIVE_CHECK_RESULT=CONSISTENT')
except Exception as e_obj_final:
print(f'EVAL_OUTPUT: OBJECTIVE_CHECK_RESULT=ERROR_ACCESSING_FINAL_OBJECTIVE ({e_obj_final})')
"""
return modified_script
# --- Main Evaluation Logic ---
def main(submission_path_str: str, results_base_dir_str: str):
start_time = time.time()
print(f"eval.py: Starting evaluation for submission at '{submission_path_str}'", flush=True)
print(f"eval.py: Results will be saved relative to '{results_base_dir_str}'", flush=True)
print(f"eval.py: Loading ground-truth dataset '{DATASET_NAME}' from Hugging Face.", flush=True)
submission_path = Path(submission_path_str)
submission_name = submission_path.name
result_dir_for_submission = Path(results_base_dir_str) / f"{submission_name}_result"
os.makedirs(result_dir_for_submission, exist_ok=True)
summary_file_path = result_dir_for_submission / "summary.txt"
# Load ground-truth dataset
try:
# Make sure you are authenticated with `huggingface-cli login` if the dataset is private or requires it.
gt_dataset = load_dataset(DATASET_NAME, split="train")
ground_truth_models = {
item[PROBLEM_NAME_COLUMN]: item[MODEL_CODE_COLUMN]
for item in gt_dataset
if PROBLEM_NAME_COLUMN in item and MODEL_CODE_COLUMN in item and item[MODEL_CODE_COLUMN]
}
if not ground_truth_models:
raise ValueError(
f"No models found in dataset. Check PROBLEM_NAME_COLUMN ('{PROBLEM_NAME_COLUMN}') and MODEL_CODE_COLUMN ('{MODEL_CODE_COLUMN}').")
print(f"eval.py: Loaded {len(ground_truth_models)} ground-truth models from Hugging Face.", flush=True)
except Exception as e:
print(f"eval.py: CRITICAL ERROR - Failed to load ground-truth dataset: {e}", flush=True)
with open(summary_file_path, "w") as f:
f.write(f"CRITICAL ERROR: Failed to load ground-truth dataset '{DATASET_NAME}'.\nError: {e}\n")
return 1 # Indicate failure
# Statistics
total_submitted_models = 0
models_ran_successfully = 0
gt_models_found = 0
consistency_checks_passed = 0
objective_checks_passed = 0 # Includes "NO_OBJECTIVE_DEFINED" as a pass
with open(summary_file_path, "w") as summary_f:
summary_f.write(f"Evaluation Summary for Submission: {submission_name}\n")
summary_f.write(
f"Ground-Truth Dataset: {DATASET_NAME}\n")
summary_f.write("-" * 30 + "\n")
submitted_model_files = list(submission_path.glob('*.py')) # Assuming Python models
if not submitted_model_files:
summary_f.write("No .py model files found in submission.\n")
print("eval.py: No .py model files found in submission.", flush=True)
return 0 # No models to evaluate, but script ran.
for model_file_path in submitted_model_files:
total_submitted_models += 1
problem_name = model_file_path.stem # Filename without .py extension
print(f"\nProcessing submitted model: {model_file_path.name}", flush=True)
summary_f.write(f"\n--- Model: {model_file_path.name} ---\n")
# 1. Run the submitted model to get its solution
summary_f.write(" 1. Running submitted model...\n")
generated_solution = run_instance(str(model_file_path))
if generated_solution is None:
summary_f.write(" - FAILED to run or get valid JSON solution from submitted model.\n")
continue # Move to the next model
models_ran_successfully += 1
summary_f.write(f" - SUCCESS: Got solution. (e.g., {str(list(generated_solution.items())[:2])}...)\n")
# 2. Find corresponding ground-truth model
summary_f.write(f" 2. Checking against ground-truth for '{problem_name}'...\n")
if problem_name not in ground_truth_models:
summary_f.write(f" - FAILED: Ground-truth model for '{problem_name}' not found in dataset.\n")
print(f" WARNING: Ground-truth for '{problem_name}' not found in dataset.", flush=True)
continue
gt_models_found += 1
ground_truth_script_content = ground_truth_models[problem_name]
summary_f.write(" - SUCCESS: Found ground-truth model.\n")
# 3. Modify ground-truth script with solution and run self-consistency check
summary_f.write(" 3. Performing self-consistency check on ground-truth model...\n")
modified_gt_script = get_modified_script(ground_truth_script_content, generated_solution)
consistency_passed_this_model = False
objective_passed_this_model = False
try:
with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False, encoding='utf-8') as tmp_file:
tmp_file.write(modified_gt_script)
tmp_file_path_str = tmp_file.name
# Run the modified ground-truth script
gt_check_result = subprocess.run(
[sys.executable, tmp_file_path_str],
capture_output=True, text=True, timeout=SCRIPT_EXECUTION_TIMEOUT
)
os.unlink(tmp_file_path_str) # Clean up temp file
# 4. Parse output of modified ground-truth
gt_stdout = gt_check_result.stdout
gt_stderr = gt_check_result.stderr
# summary_f.write(f" Modified GT STDOUT: {gt_stdout[:500]}...\n") # For debugging
if gt_stderr:
summary_f.write(f" Modified GT STDERR: {gt_stderr[:500]}...\n")
if "EVAL_OUTPUT: CONSISTENCY_CHECK_RESULT=SUCCESS" in gt_stdout:
summary_f.write(" - CONSISTENCY: PASSED\n")
consistency_checks_passed += 1
consistency_passed_this_model = True
elif "EVAL_OUTPUT: CONSISTENCY_CHECK_RESULT=UNSATISFIABLE" in gt_stdout:
summary_f.write(" - CONSISTENCY: FAILED (Model became unsatisfiable)\n")
else:
summary_f.write(" - CONSISTENCY: FAILED (Could not determine consistency from output)\n")
if "EVAL_OUTPUT: OBJECTIVE_CHECK_RESULT=CONSISTENT" in gt_stdout or \
"EVAL_OUTPUT: OBJECTIVE_CHECK_RESULT=NO_OBJECTIVE_DEFINED" in gt_stdout:
summary_f.write(" - OBJECTIVE: PASSED (Consistent or no objective)\n")
objective_checks_passed += 1
objective_passed_this_model = True
elif "EVAL_OUTPUT: OBJECTIVE_CHECK_RESULT=CHANGED" in gt_stdout:
summary_f.write(f" - OBJECTIVE: FAILED (Value changed)\n")
elif "EVAL_OUTPUT: OBJECTIVE_CHECK_RESULT=ERROR_ACCESSING_FINAL_OBJECTIVE" in gt_stdout:
summary_f.write(f" - OBJECTIVE: FAILED (Error accessing final objective)\n")
else:
summary_f.write(" - OBJECTIVE: FAILED (Could not determine objective consistency from output)\n")
except subprocess.TimeoutExpired:
summary_f.write(
f" - SELF-CONSISTENCY CHECK: FAILED (Timeout >{SCRIPT_EXECUTION_TIMEOUT}s running modified ground-truth)\n")
print(f" ERROR: Timeout running modified GT for {problem_name}", flush=True)
except Exception as e_gt_run:
summary_f.write(
f" - SELF-CONSISTENCY CHECK: FAILED (Error running modified ground-truth: {e_gt_run})\n")
print(f" ERROR: Running modified GT for {problem_name}: {e_gt_run}", flush=True)
# Final statistics
summary_f.write("\n" + "=" * 30 + "\n")
summary_f.write("Overall Evaluation Statistics:\n")
summary_f.write(f" Total Submitted Models Parsed: {total_submitted_models}\n")
summary_f.write(
f" Models That Ran Successfully (produced solution): {models_ran_successfully}/{total_submitted_models}\n")
summary_f.write(
f" Corresponding Ground-Truth Models Found: {gt_models_found}/{models_ran_successfully} (of those that ran)\n")
summary_f.write(f" Consistency Checks Passed: {consistency_checks_passed}/{gt_models_found}\n")
summary_f.write(f" Objective Value Checks Passed: {objective_checks_passed}/{gt_models_found}\n")
# Define an overall score, e.g. number of models that passed both checks against found GT
fully_passed_models = 0
# This needs re-evaluation logic, but for now let's say a score is consistency+objective passes
# This simple score is just the sum of passes, could be more nuanced
overall_score = consistency_checks_passed + objective_checks_passed
summary_f.write(f"\nScore: {overall_score} (Raw sum of passed checks)\n") # For Gradio app to parse
elapsed_time = time.time() - start_time
print(f"eval.py: Evaluation finished in {elapsed_time:.2f} seconds.", flush=True)
print(f"eval.py: Summary written to {summary_file_path}", flush=True)
return 0 # Success
if __name__ == "__main__":
if len(sys.argv) < 3:
print("Usage: python eval.py <path_to_submitted_directory> <path_to_results_base_directory>")
print("Example: python eval.py ./submissions/my_run ./results")
sys.exit(1)
submission_dir = sys.argv[1]
results_base_dir = sys.argv[2]
# Simple check if submission_dir exists
if not Path(submission_dir).is_dir():
print(f"Error: Submission directory '{submission_dir}' not found or not a directory.")
sys.exit(1)
exit_code = main(submission_dir, results_base_dir)
sys.exit(exit_code) |