File size: 13,705 Bytes
b5712a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import shutil # For file operations
from pathlib import Path # For path manipulations


from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval


def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=[
            ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
            ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
            ColumnFilter(
                AutoEvalColumn.params.name,
                type="slider",
                min=0.01,
                max=150,
                label="Select the number of parameters (B)",
            ),
            ColumnFilter(
                AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
            ),
        ],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )




# --- Function to handle the uploaded directory ---
def save_uploaded_models(files):
    if files:
        saved_paths = []
        # 'files' will be a list of temporary file paths when file_count="directory"
        # The actual files are in a temporary directory.
        # We want to recreate the structure within UPLOAD_DIR.

        # Assuming 'files' contains full paths to files within a single uploaded directory
        # We need to determine the base name of the uploaded directory.
        # Gradio often provides a list of file objects. Each object has a .name attribute (path).
        # Example: if user uploads "my_run_1" containing "model.txt" and "config.json"
        # files might be like: ['/tmp/gradio/somerandomhash/my_run_1/model.txt', '/tmp/gradio/somerandomhash/my_run_1/config.json']
        # Or it might be a list of tempfile._TemporaryFileWrapper objects.

        if not isinstance(files, list):
            files = [files] # Ensure it's a list

        # Let's assume `files` is a list of `tempfile._TemporaryFileWrapper` or similar
        # where `file_obj.name` gives the temporary path to each file.

        # Get the common parent directory from the temporary paths if possible,
        # or derive the uploaded folder name from one of the paths.
        # This part can be tricky depending on exactly how Gradio passes directory uploads.
        # A robust way is to create a unique sub-directory for each upload.

        # Let's get the name of the directory the user uploaded.
        # With file_count="directory", `files` is a list of file paths.
        # We can infer the uploaded directory name from the first file path.
        if files:
            first_file_path = Path(files[0].name if hasattr(files[0], 'name') else files[0])
            # The uploaded directory name would be the parent of the files if Gradio flattens it,
            # or the parent of the temp directory housing the uploaded folder.
            # For simplicity, let's try to get the original uploaded folder name.
            # Gradio's `UploadButton` usually puts uploaded directories into a subdirectory
            # within the temp space that has the same name as the original uploaded directory.
            # e.g., if user uploads "my_models_run1", files might be in /tmp/somehash/my_models_run1/file1.txt

            # A common approach: find the common prefix of all file paths,
            # then determine the uploaded directory's name from that.
            # However, Gradio's behavior is that `files` is a list of file objects,
            # each with a `.name` attribute that is the full path to a temporary file.
            # These temporary files are often placed inside a directory that *itself*
            # represents the uploaded directory structure.

            # Let's assume the user uploaded a directory named "user_uploaded_dir"
            # And it contains "model1.txt" and "model2.txt"
            # `files` might be `[<temp_file_obj_for_model1>, <temp_file_obj_for_model2>]`
            # `files[0].name` might be `/tmp/gradio_guid/user_uploaded_dir/model1.txt`

            # We need to extract "user_uploaded_dir"
            # And then recreate this structure under UPLOAD_DIR.

            # Assuming the first file gives us a good representation of the path structure.
            temp_file_path = Path(files[0].name if hasattr(files[0], 'name') else files[0])
            # The uploaded directory's name is usually the second to last part of the temp path
            # e.g. /tmp/tmpxyz/uploaded_dir_name/file.txt -> "uploaded_dir_name"
            uploaded_dir_name = temp_file_path.parent.name

            destination_folder_path = Path(UPLOAD_DIR) / uploaded_dir_name
            os.makedirs(destination_folder_path, exist_ok=True)

            for uploaded_file_obj in files:
                # Get the path to the temporary file
                temp_path_str = uploaded_file_obj.name
                temp_path = Path(temp_path_str)

                # Get the original filename (relative to the uploaded directory)
                # This should be just the filename itself if Gradio preserves the structure
                # correctly inside the temp directory for the uploaded folder.
                original_filename = temp_path.name # e.g., "model1.txt"

                destination_file_path = destination_folder_path / original_filename

                try:
                    shutil.copy(temp_path_str, destination_file_path)
                    saved_paths.append(str(destination_file_path))
                except Exception as e:
                    print(f"Error copying {temp_path_str} to {destination_file_path}: {e}")
                    return f"Error saving files: {e}"

            if saved_paths:
                return f"Successfully uploaded and saved models to: {destination_folder_path}"
            else:
                return "No files were saved."
        return "No files uploaded."




# demo = gr.Blocks(css=custom_css)
demo = gr.Blocks()

with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸš€ Simple Submit here!", elem_id="llm-benchmark-tab-table", id=4):
            gr.Markdown(
                "## Submit your generated models here!",
                elem_classes="markdown-text",
            )
            upload_button = gr.UploadButton(
                label="Upload your generated models (only directories accepted)",
                size="lg",
                file_count="directory",
                elem_id="upload-button",
            )
            # Add an output component to display the result of the upload
            upload_status = gr.Textbox(label="Upload Status", interactive=False)

            # Connect the upload_button to the save_uploaded_models function
            upload_button.upload(save_uploaded_models, upload_button, upload_status)



        with gr.TabItem("πŸš€ Submit here!", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value.name for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                ],
                submission_result,
            )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()