File size: 13,705 Bytes
b5712a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import shutil # For file operations
from pathlib import Path # For path manipulations
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(
AutoEvalColumn.params.name,
type="slider",
min=0.01,
max=150,
label="Select the number of parameters (B)",
),
ColumnFilter(
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
# --- Function to handle the uploaded directory ---
def save_uploaded_models(files):
if files:
saved_paths = []
# 'files' will be a list of temporary file paths when file_count="directory"
# The actual files are in a temporary directory.
# We want to recreate the structure within UPLOAD_DIR.
# Assuming 'files' contains full paths to files within a single uploaded directory
# We need to determine the base name of the uploaded directory.
# Gradio often provides a list of file objects. Each object has a .name attribute (path).
# Example: if user uploads "my_run_1" containing "model.txt" and "config.json"
# files might be like: ['/tmp/gradio/somerandomhash/my_run_1/model.txt', '/tmp/gradio/somerandomhash/my_run_1/config.json']
# Or it might be a list of tempfile._TemporaryFileWrapper objects.
if not isinstance(files, list):
files = [files] # Ensure it's a list
# Let's assume `files` is a list of `tempfile._TemporaryFileWrapper` or similar
# where `file_obj.name` gives the temporary path to each file.
# Get the common parent directory from the temporary paths if possible,
# or derive the uploaded folder name from one of the paths.
# This part can be tricky depending on exactly how Gradio passes directory uploads.
# A robust way is to create a unique sub-directory for each upload.
# Let's get the name of the directory the user uploaded.
# With file_count="directory", `files` is a list of file paths.
# We can infer the uploaded directory name from the first file path.
if files:
first_file_path = Path(files[0].name if hasattr(files[0], 'name') else files[0])
# The uploaded directory name would be the parent of the files if Gradio flattens it,
# or the parent of the temp directory housing the uploaded folder.
# For simplicity, let's try to get the original uploaded folder name.
# Gradio's `UploadButton` usually puts uploaded directories into a subdirectory
# within the temp space that has the same name as the original uploaded directory.
# e.g., if user uploads "my_models_run1", files might be in /tmp/somehash/my_models_run1/file1.txt
# A common approach: find the common prefix of all file paths,
# then determine the uploaded directory's name from that.
# However, Gradio's behavior is that `files` is a list of file objects,
# each with a `.name` attribute that is the full path to a temporary file.
# These temporary files are often placed inside a directory that *itself*
# represents the uploaded directory structure.
# Let's assume the user uploaded a directory named "user_uploaded_dir"
# And it contains "model1.txt" and "model2.txt"
# `files` might be `[<temp_file_obj_for_model1>, <temp_file_obj_for_model2>]`
# `files[0].name` might be `/tmp/gradio_guid/user_uploaded_dir/model1.txt`
# We need to extract "user_uploaded_dir"
# And then recreate this structure under UPLOAD_DIR.
# Assuming the first file gives us a good representation of the path structure.
temp_file_path = Path(files[0].name if hasattr(files[0], 'name') else files[0])
# The uploaded directory's name is usually the second to last part of the temp path
# e.g. /tmp/tmpxyz/uploaded_dir_name/file.txt -> "uploaded_dir_name"
uploaded_dir_name = temp_file_path.parent.name
destination_folder_path = Path(UPLOAD_DIR) / uploaded_dir_name
os.makedirs(destination_folder_path, exist_ok=True)
for uploaded_file_obj in files:
# Get the path to the temporary file
temp_path_str = uploaded_file_obj.name
temp_path = Path(temp_path_str)
# Get the original filename (relative to the uploaded directory)
# This should be just the filename itself if Gradio preserves the structure
# correctly inside the temp directory for the uploaded folder.
original_filename = temp_path.name # e.g., "model1.txt"
destination_file_path = destination_folder_path / original_filename
try:
shutil.copy(temp_path_str, destination_file_path)
saved_paths.append(str(destination_file_path))
except Exception as e:
print(f"Error copying {temp_path_str} to {destination_file_path}: {e}")
return f"Error saving files: {e}"
if saved_paths:
return f"Successfully uploaded and saved models to: {destination_folder_path}"
else:
return "No files were saved."
return "No files uploaded."
# demo = gr.Blocks(css=custom_css)
demo = gr.Blocks()
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Simple Submit here!", elem_id="llm-benchmark-tab-table", id=4):
gr.Markdown(
"## Submit your generated models here!",
elem_classes="markdown-text",
)
upload_button = gr.UploadButton(
label="Upload your generated models (only directories accepted)",
size="lg",
file_count="directory",
elem_id="upload-button",
)
# Add an output component to display the result of the upload
upload_status = gr.Textbox(label="Upload Status", interactive=False)
# Connect the upload_button to the save_uploaded_models function
upload_button.upload(save_uploaded_models, upload_button, upload_status)
with gr.TabItem("π Submit here!", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch() |