CP-Bench-Leaderboard / src /hf_utils.py
kostis-init's picture
Add dataset versioning support and update leaderboard configuration
bea3aa3
raw
history blame
7.38 kB
"""Utilities for interacting with the Hugging Face Hub."""
import io
import json
import os
from pathlib import Path
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download
from src.config import DATASET_REPO_ID, DS_RESULTS_PATH, DS_SUBMISSIONS_PATH, LDB_COLS
# Initialize HfApi
try:
HF_API = HfApi()
print(f"Successfully initialized HfApi. Will use dataset repo: {DATASET_REPO_ID}")
except Exception as e:
print(f"Failed to initialize HfApi: {e}")
HF_API = None
def load_leaderboard_data(dataset_version):
"""Load leaderboard data from Hugging Face Dataset."""
if not HF_API:
return pd.DataFrame(columns=LDB_COLS)
leaderboard_entries = []
processed_result_dirs = set()
try:
# List all files in the results path of the dataset
repo_files = HF_API.list_repo_files(repo_id=DATASET_REPO_ID, repo_type="dataset")
version_submissions_path = f"{DS_SUBMISSIONS_PATH}/{dataset_version}"
version_results_path = f"{DS_RESULTS_PATH}/{dataset_version}"
# Find all summary files
summary_files = [
f for f in repo_files
if f.endswith("summary.txt") and f.startswith(version_results_path)
]
summary_files.sort(reverse=True)
submissions = [
f for f in repo_files
if f.endswith("submission.jsonl") and f.startswith(version_submissions_path)
]
metadata_files = [
f for f in repo_files
if f.endswith("metadata.json") and f.startswith(version_submissions_path)
]
# for file_path in summary_files:
for file_path in submissions:
dir_name = Path(file_path).parent.name
if dir_name in processed_result_dirs:
continue
# download metadata file of this submission
metadata_file = next((f for f in metadata_files if f.startswith(f"{version_submissions_path}/{dir_name}/")), None)
if metadata_file:
local_metadata_path = hf_hub_download(
repo_id=DATASET_REPO_ID,
filename=metadata_file,
repo_type="dataset",
local_dir=os.path.join("local_hf_downloads", dir_name),
)
with open(local_metadata_path, "r", encoding="utf-8") as f:
metadata = json.load(f)
os.remove(local_metadata_path)
# download the report file if it exists
report_file = f"{version_submissions_path}/{dir_name}/report.pdf"
if report_file in repo_files:
# create a public URL for the report file
report_file = f"https://huggingface.co/datasets/{DATASET_REPO_ID}/blob/main/{report_file}"
else:
report_file = None
processed_result_dirs.add(dir_name)
entry = {LDB_COLS[0]: dir_name,
LDB_COLS[1]: metadata.get("modelling_framework", "Unknown"),
LDB_COLS[2]: metadata.get("base_llm", "Unknown"),
LDB_COLS[3]: '*Calculating...*',
LDB_COLS[4]: '*Calculating...*',
LDB_COLS[5]: '*Calculating...*',
LDB_COLS[6]: f'<a href="{report_file}" target="_blank">πŸ“„</a>' if report_file else '-'}
# check if summary file exists, otherwise skip
if f"{version_results_path}/{dir_name}/summary.txt" not in repo_files:
leaderboard_entries.append(entry)
continue
# Download summary file
local_summary_path = hf_hub_download(
repo_id=DATASET_REPO_ID,
filename=f"{version_results_path}/{dir_name}/summary.txt",
repo_type="dataset",
local_dir=os.path.join("local_hf_downloads", dir_name),
)
if Path(local_summary_path).exists():
with open(local_summary_path, "r", encoding="utf-8") as f:
for line in f:
if 'Error perc' in line:
entry[LDB_COLS[5]] = float(line.split(":")[1].strip().replace("%", ""))
if 'Final Solution Accuracy' in line:
entry[LDB_COLS[4]] = float(line.split(":")[1].strip().replace("%", ""))
if 'Submission coverage perc' in line:
entry[LDB_COLS[3]] = float(line.split(":")[1].strip().replace("%", ""))
os.remove(local_summary_path)
else:
print(f"Warning: Summary file {local_summary_path} does not exist or is empty.")
leaderboard_entries.append(entry)
except Exception as e:
print(f"Error loading leaderboard data: {e}")
if not leaderboard_entries:
return pd.DataFrame(columns=LDB_COLS)
df = pd.DataFrame(leaderboard_entries)
# Sort by "Final Solution Accuracy" descending
df[LDB_COLS[4]] = pd.to_numeric(df[LDB_COLS[4]], errors='coerce') # Ensure numeric type
df = df.sort_values(by=LDB_COLS[4], ascending=False)
return df
def upload_submission(uploaded_file, dir_name, report_file, model_framework, base_llm, dataset_version):
"""Upload submission to Hugging Face Dataset."""
if not HF_API:
return False, "Hugging Face API not initialized"
try:
submission_path = f"{DS_SUBMISSIONS_PATH}/{dataset_version}/{dir_name}"
HF_API.upload_file(
path_or_fileobj=uploaded_file,
path_in_repo=f"{submission_path}/submission.jsonl",
repo_id=DATASET_REPO_ID,
repo_type="dataset",
commit_message=f"Upload submission: {dir_name} for version {dataset_version}"
)
if report_file:
HF_API.upload_file(
path_or_fileobj=report_file,
path_in_repo=f"{submission_path}/report.pdf",
repo_id=DATASET_REPO_ID,
repo_type="dataset",
commit_message=f"Upload report for submission: {dir_name} for version {dataset_version}"
)
# create a file for metadata
metadata = {
"submission_name": dir_name,
"modelling_framework": model_framework,
"base_llm": base_llm,
"dataset_version": dataset_version,
}
HF_API.upload_file(
path_or_fileobj=io.BytesIO(json.dumps(metadata, indent=4).encode('utf-8')),
path_in_repo=f"{submission_path}/metadata.json",
repo_id=DATASET_REPO_ID,
repo_type="dataset",
commit_message=f"Upload metadata for submission: {dir_name} for version {dataset_version}"
)
return True, submission_path
except Exception as e:
return False, f"Upload error: {str(e)}"
def check_name_exists(submission_name, dataset_version):
if not HF_API:
return False
try:
repo_files = HF_API.list_repo_files(repo_id=DATASET_REPO_ID, repo_type="dataset")
for file_path in repo_files:
if file_path.startswith(f"{DS_SUBMISSIONS_PATH}/{dataset_version}/{submission_name}"):
return True
except Exception as e:
print(f"Error checking name existence: {e}")
return False