Spaces:
Sleeping
Sleeping
Commit
Β·
21ed616
1
Parent(s):
180f9fe
change submission from directory to a single jsonl file
Browse files- src/config.py +1 -1
- src/eval.py +88 -86
- src/hf_utils.py +10 -11
- src/ui.py +22 -6
src/config.py
CHANGED
@@ -8,4 +8,4 @@ DS_SUBMISSIONS_PATH = "submissions"
|
|
8 |
DS_RESULTS_PATH = "results"
|
9 |
|
10 |
# leaderboard
|
11 |
-
LDB_COLS = ["Submission Name", "
|
|
|
8 |
DS_RESULTS_PATH = "results"
|
9 |
|
10 |
# leaderboard
|
11 |
+
LDB_COLS = ["Submission Name", "Solution Found (%)", "Consistency (%)", "Final Solution Accuracy (%)", "# of Models submitted"]
|
src/eval.py
CHANGED
@@ -81,84 +81,64 @@ def start_background_evaluation(submission_path):
|
|
81 |
thread.start()
|
82 |
return True
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
def
|
86 |
"""
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
89 |
"""
|
90 |
-
idx = 0
|
91 |
-
while idx < len(text_output):
|
92 |
-
# Find the next potential start of a JSON structure
|
93 |
-
start_brace = text_output.find('{', idx)
|
94 |
-
start_bracket = text_output.find('[', idx)
|
95 |
-
|
96 |
-
if start_brace == -1 and start_bracket == -1:
|
97 |
-
# No more '{' or '[' found in the rest of the string
|
98 |
-
return None
|
99 |
-
|
100 |
-
# Determine the actual starting character for this attempt
|
101 |
-
if start_brace != -1 and (start_bracket == -1 or start_brace < start_bracket):
|
102 |
-
json_start_index = start_brace
|
103 |
-
else:
|
104 |
-
json_start_index = start_bracket
|
105 |
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
try:
|
109 |
-
# Use raw_decode to parse the first valid JSON object from the segment
|
110 |
-
decoder = json.JSONDecoder()
|
111 |
-
json_obj, end_index_in_segment = decoder.raw_decode(potential_json_segment)
|
112 |
-
# Successfully parsed a JSON object
|
113 |
-
return json_obj
|
114 |
-
except json.JSONDecodeError:
|
115 |
-
# This segment (starting at json_start_index) wasn't a valid JSON.
|
116 |
-
# Advance the search index past the character that caused the current attempt.
|
117 |
-
idx = json_start_index + 1
|
118 |
-
|
119 |
-
return None # No valid JSON found in the entire string
|
120 |
-
|
121 |
-
|
122 |
-
def run_instance(instance_path_str: str,
|
123 |
-
timeout: int = SCRIPT_EXECUTION_TIMEOUT): # SCRIPT_EXECUTION_TIMEOUT should be defined
|
124 |
-
"""Run the instance file and robustly capture the JSON output."""
|
125 |
-
command = [sys.executable, instance_path_str]
|
126 |
-
instance_name = Path(instance_path_str).name
|
127 |
try:
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
if not stdout_text or not stdout_text.strip():
|
141 |
-
print(f" ERROR: No stdout from {instance_name}.", flush=True)
|
142 |
-
return None
|
143 |
-
|
144 |
-
solution = extract_json_from_string(stdout_text)
|
145 |
-
|
146 |
-
if solution is None:
|
147 |
-
# Be more verbose if JSON extraction fails
|
148 |
-
abbreviated_stdout = stdout_text.replace('\n', '\\n')[:300] # Show newlines as \n for brevity
|
149 |
-
print(
|
150 |
-
f" ERROR: Could not extract valid JSON from {instance_name}. Raw stdout (abbreviated): '{abbreviated_stdout}...'",
|
151 |
-
flush=True)
|
152 |
-
return None
|
153 |
-
|
154 |
-
return solution
|
155 |
|
156 |
-
except subprocess.TimeoutExpired:
|
157 |
-
|
158 |
-
|
|
|
159 |
except Exception as e:
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
|
164 |
def add_constraints_as_string(solution):
|
@@ -238,14 +218,14 @@ def main(
|
|
238 |
print(f" Downloading submission files from '{submission_path_in_dataset}' to '{local_submission_dir}'...",
|
239 |
flush=True)
|
240 |
try:
|
241 |
-
# Download the relevant submission
|
242 |
-
|
243 |
repo_id=user_dataset_repo_id,
|
244 |
repo_type="dataset",
|
245 |
local_dir=local_submission_dir,
|
246 |
-
|
247 |
)
|
248 |
-
print(f" Downloaded submission
|
249 |
|
250 |
except Exception as e_download:
|
251 |
print(f" CRITICAL ERROR - Failed to download submission files: {e_download}", flush=True)
|
@@ -269,6 +249,18 @@ def main(
|
|
269 |
# (Attempt to upload error summary)
|
270 |
return 1
|
271 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
# Statistics
|
273 |
total_submitted_models = 0
|
274 |
models_ran_successfully = 0
|
@@ -285,24 +277,35 @@ def main(
|
|
285 |
summary_f.write("-" * 30 + "\n")
|
286 |
|
287 |
# Iterate through downloaded submitted models
|
288 |
-
|
289 |
-
|
290 |
-
summary_f.write("No .py model files found in downloaded submission.\n")
|
291 |
-
print(" No .py model files found in downloaded submission.", flush=True)
|
292 |
|
293 |
-
for model_file_path in submitted_model_files:
|
294 |
total_submitted_models += 1
|
295 |
-
problem_name =
|
296 |
-
print(f"\n Processing downloaded model: {
|
297 |
-
summary_f.write(f"\n--- Model: {
|
298 |
|
299 |
summary_f.write(" 1. Running submitted model...\n")
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
if generated_solution is None:
|
302 |
-
summary_f.write(" - FAILED
|
303 |
continue
|
|
|
304 |
models_ran_successfully += 1
|
305 |
-
summary_f.write(f" - SUCCESS: Got solution
|
306 |
|
307 |
summary_f.write(f" 2. Checking against ground-truth for '{problem_name}'...\n")
|
308 |
if problem_name not in ground_truth_models:
|
@@ -328,7 +331,6 @@ def main(
|
|
328 |
os.unlink(tmp_file_path_str)
|
329 |
|
330 |
gt_stdout = gt_check_result.stdout
|
331 |
-
# ... (parse EVAL_OUTPUT tags for consistency and objective)
|
332 |
if "SUCCESS: Model is consistent" in gt_stdout:
|
333 |
summary_f.write(" - CONSISTENCY: PASSED\n")
|
334 |
consistency_checks_passed += 1
|
|
|
81 |
thread.start()
|
82 |
return True
|
83 |
|
84 |
+
def extract_json_from_code_output(output: str):
|
85 |
+
try:
|
86 |
+
start_index = output.find('{')
|
87 |
+
end_index = output.rfind('}') + 1
|
88 |
+
# Extract the JSON part
|
89 |
+
json_part = output[start_index:end_index]
|
90 |
+
return json.loads(json_part)
|
91 |
+
except json.JSONDecodeError:
|
92 |
+
return None
|
93 |
+
|
94 |
|
95 |
+
def exec_code(code: str, timeout=10, modelling_language='cpmpy'):
|
96 |
"""
|
97 |
+
Execute the given code and return the output
|
98 |
+
|
99 |
+
:param code: The code to execute as a string
|
100 |
+
:param timeout: The maximum time to wait for the code to execute in seconds
|
101 |
+
:param modelling_language: The language to use for execution (cpmpy, minizinc, or-tools)
|
102 |
+
:return: A tuple of (success, output, timeout_occured)
|
103 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
# create a temp directory to store the temporary file
|
106 |
+
temp_dir_name = "_temp_dir_for_exec_code"
|
107 |
+
temp_dir = os.path.join(os.getcwd(), temp_dir_name)
|
108 |
+
os.makedirs(temp_dir, exist_ok=True)
|
109 |
+
|
110 |
+
# write the code to a temporary file
|
111 |
+
suffix = '.__hidden_py__' if modelling_language == "cpmpy" or modelling_language == "or-tools" else '.mzn'
|
112 |
+
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix=suffix, dir=temp_dir, encoding='utf-8') as temp_file:
|
113 |
+
temp_instance_path = temp_file.name
|
114 |
+
temp_file.write(code)
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
try:
|
117 |
+
# execute the code
|
118 |
+
if modelling_language == "cpmpy" or modelling_language == "or-tools":
|
119 |
+
command = [sys.executable, temp_instance_path]
|
120 |
+
result = subprocess.run(command, capture_output=True, text=True, timeout=timeout, encoding='utf-8')
|
121 |
+
|
122 |
+
successfully_executed = (result.returncode == 0)
|
123 |
+
output = result.stdout if successfully_executed else result.stderr
|
124 |
+
timeout_occurred = False
|
125 |
+
elif modelling_language == "minizinc":
|
126 |
+
successfully_executed, output, timeout_occurred = exec_code_minizinc(code, timeout)
|
127 |
+
else:
|
128 |
+
raise ValueError(f"MODELLING_LANGUAGE not supported: {modelling_language}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
except subprocess.TimeoutExpired as e:
|
131 |
+
successfully_executed = False
|
132 |
+
output = f"Timeout Error: Execution time exceeded {timeout} seconds"
|
133 |
+
timeout_occurred = True
|
134 |
except Exception as e:
|
135 |
+
successfully_executed = False
|
136 |
+
output = f"Error: {e}"
|
137 |
+
timeout_occurred = False
|
138 |
+
|
139 |
+
os.remove(temp_instance_path)
|
140 |
+
|
141 |
+
return successfully_executed, output, timeout_occurred
|
142 |
|
143 |
|
144 |
def add_constraints_as_string(solution):
|
|
|
218 |
print(f" Downloading submission files from '{submission_path_in_dataset}' to '{local_submission_dir}'...",
|
219 |
flush=True)
|
220 |
try:
|
221 |
+
# Download the relevant submission file
|
222 |
+
hf_hub_download(
|
223 |
repo_id=user_dataset_repo_id,
|
224 |
repo_type="dataset",
|
225 |
local_dir=local_submission_dir,
|
226 |
+
filename=f"{submission_path_in_dataset}/submission.jsonl",
|
227 |
)
|
228 |
+
print(f" Downloaded submission file successfully.", flush=True)
|
229 |
|
230 |
except Exception as e_download:
|
231 |
print(f" CRITICAL ERROR - Failed to download submission files: {e_download}", flush=True)
|
|
|
249 |
# (Attempt to upload error summary)
|
250 |
return 1
|
251 |
|
252 |
+
# load generated models from jsonl to memory
|
253 |
+
print(f" Loading generated models from '{local_submission_dir}'...", flush=True)
|
254 |
+
submitted_models = []
|
255 |
+
with open(os.path.join(local_submission_dir, submission_path_in_dataset, "submission.jsonl"), "r", encoding="utf-8") as f:
|
256 |
+
for line in f:
|
257 |
+
try:
|
258 |
+
json_obj = json.loads(line)
|
259 |
+
submitted_models.append(json_obj)
|
260 |
+
except json.JSONDecodeError as e:
|
261 |
+
print(f" ERROR: Failed to parse JSON object from line: {line}. Error: {e}", flush=True)
|
262 |
+
print(f" Loaded {len(submitted_models)} generated models.", flush=True)
|
263 |
+
|
264 |
# Statistics
|
265 |
total_submitted_models = 0
|
266 |
models_ran_successfully = 0
|
|
|
277 |
summary_f.write("-" * 30 + "\n")
|
278 |
|
279 |
# Iterate through downloaded submitted models
|
280 |
+
for submitted_model in submitted_models:
|
281 |
+
curr_model = submitted_model[GT_MODEL_CODE_COLUMN]
|
|
|
|
|
282 |
|
|
|
283 |
total_submitted_models += 1
|
284 |
+
problem_name = submitted_model[GT_PROBLEM_NAME_COLUMN]
|
285 |
+
print(f"\n Processing downloaded model: {problem_name}", flush=True)
|
286 |
+
summary_f.write(f"\n--- Model: {problem_name} ---\n")
|
287 |
|
288 |
summary_f.write(" 1. Running submitted model...\n")
|
289 |
+
|
290 |
+
succ_exec, output, timeout_occurred = exec_code(curr_model, timeout=SCRIPT_EXECUTION_TIMEOUT)
|
291 |
+
|
292 |
+
if timeout_occurred:
|
293 |
+
summary_f.write(f" - TIMEOUT: Execution time exceeded {SCRIPT_EXECUTION_TIMEOUT} seconds.\n")
|
294 |
+
continue
|
295 |
+
if not succ_exec:
|
296 |
+
summary_f.write(f" - FAILED: Execution failed with error: {output}\n")
|
297 |
+
continue
|
298 |
+
if output is None or not output.strip():
|
299 |
+
summary_f.write(f" - FAILED: No output from execution.\n")
|
300 |
+
continue
|
301 |
+
# Attempt to extract JSON from stdout
|
302 |
+
generated_solution = extract_json_from_code_output(output)
|
303 |
if generated_solution is None:
|
304 |
+
summary_f.write(f" - FAILED: Could not extract JSON solution from output: {output}\n")
|
305 |
continue
|
306 |
+
|
307 |
models_ran_successfully += 1
|
308 |
+
summary_f.write(f" - SUCCESS: Got solution: {generated_solution}\n")
|
309 |
|
310 |
summary_f.write(f" 2. Checking against ground-truth for '{problem_name}'...\n")
|
311 |
if problem_name not in ground_truth_models:
|
|
|
331 |
os.unlink(tmp_file_path_str)
|
332 |
|
333 |
gt_stdout = gt_check_result.stdout
|
|
|
334 |
if "SUCCESS: Model is consistent" in gt_stdout:
|
335 |
summary_f.write(" - CONSISTENCY: PASSED\n")
|
336 |
consistency_checks_passed += 1
|
src/hf_utils.py
CHANGED
@@ -90,23 +90,22 @@ def load_leaderboard_data():
|
|
90 |
return pd.DataFrame(leaderboard_entries)
|
91 |
|
92 |
|
93 |
-
def upload_submission(
|
94 |
"""Upload submission to Hugging Face Dataset."""
|
95 |
if not HF_API:
|
96 |
return False, "Hugging Face API not initialized"
|
97 |
-
|
98 |
try:
|
99 |
submission_path = f"{DS_SUBMISSIONS_PATH}/{dir_name}"
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
)
|
110 |
|
111 |
return True, submission_path
|
112 |
except Exception as e:
|
|
|
90 |
return pd.DataFrame(leaderboard_entries)
|
91 |
|
92 |
|
93 |
+
def upload_submission(uploaded_file, dir_name):
|
94 |
"""Upload submission to Hugging Face Dataset."""
|
95 |
if not HF_API:
|
96 |
return False, "Hugging Face API not initialized"
|
97 |
+
|
98 |
try:
|
99 |
submission_path = f"{DS_SUBMISSIONS_PATH}/{dir_name}"
|
100 |
|
101 |
+
# file_name = os.path.basename(uploaded_file.name)
|
102 |
+
HF_API.upload_file(
|
103 |
+
path_or_fileobj=uploaded_file,
|
104 |
+
path_in_repo=f"{submission_path}/submission.jsonl",
|
105 |
+
repo_id=DATASET_REPO_ID,
|
106 |
+
repo_type="dataset",
|
107 |
+
commit_message=f"Upload submission: {dir_name}"
|
108 |
+
)
|
|
|
109 |
|
110 |
return True, submission_path
|
111 |
except Exception as e:
|
src/ui.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from pathlib import Path
|
3 |
|
@@ -5,10 +7,10 @@ from src.hf_utils import load_leaderboard_data, upload_submission, check_name_ex
|
|
5 |
from src.eval import start_background_evaluation
|
6 |
|
7 |
|
8 |
-
def handle_upload(submission_name,
|
9 |
"""Handle file upload and start evaluation."""
|
10 |
-
if not
|
11 |
-
return "No
|
12 |
|
13 |
# normalize the submission name
|
14 |
submission_name = submission_name.strip().replace(" ", "_").lower()
|
@@ -26,8 +28,22 @@ def handle_upload(submission_name, uploaded_files, progress=gr.Progress()):
|
|
26 |
try:
|
27 |
progress(0.3, "Uploading to Hugging Face...")
|
28 |
|
29 |
-
#
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
if not success:
|
32 |
return f"Upload failed: {result}"
|
33 |
|
@@ -58,7 +74,7 @@ def create_ui():
|
|
58 |
interactive=True,
|
59 |
info="This name will appear on the leaderboard"
|
60 |
)
|
61 |
-
upload_button = gr.UploadButton("Click to Upload
|
62 |
status_box = gr.Textbox(label="Status", interactive=False)
|
63 |
|
64 |
with gr.Column(scale=3):
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
import gradio as gr
|
4 |
from pathlib import Path
|
5 |
|
|
|
7 |
from src.eval import start_background_evaluation
|
8 |
|
9 |
|
10 |
+
def handle_upload(submission_name, uploaded_file, progress=gr.Progress()):
|
11 |
"""Handle file upload and start evaluation."""
|
12 |
+
if not uploaded_file:
|
13 |
+
return "No file uploaded. Please upload a valid submission file."
|
14 |
|
15 |
# normalize the submission name
|
16 |
submission_name = submission_name.strip().replace(" ", "_").lower()
|
|
|
28 |
try:
|
29 |
progress(0.3, "Uploading to Hugging Face...")
|
30 |
|
31 |
+
# Check if the file is a valid JSONL file
|
32 |
+
if not uploaded_file.name.endswith(".jsonl"):
|
33 |
+
return "Invalid file format. Please upload a .jsonl file."
|
34 |
+
|
35 |
+
# Check that the keys in the JSONL file are correct ('id' and 'model')
|
36 |
+
with open(uploaded_file.name, "r") as file:
|
37 |
+
found_one = False
|
38 |
+
for line in file:
|
39 |
+
found_one = True
|
40 |
+
json_object = json.loads(line)
|
41 |
+
if not all(key in json_object for key in ["id", "model"]):
|
42 |
+
return "Invalid content. Each line must contain 'id' and 'model' keys."
|
43 |
+
if not found_one:
|
44 |
+
return "Empty file. Please upload a valid JSONL file."
|
45 |
+
|
46 |
+
success, result = upload_submission(uploaded_file, submission_name)
|
47 |
if not success:
|
48 |
return f"Upload failed: {result}"
|
49 |
|
|
|
74 |
interactive=True,
|
75 |
info="This name will appear on the leaderboard"
|
76 |
)
|
77 |
+
upload_button = gr.UploadButton("Click to Upload Submission", file_count="single")
|
78 |
status_box = gr.Textbox(label="Status", interactive=False)
|
79 |
|
80 |
with gr.Column(scale=3):
|