|
from fastapi import FastAPI, HTTPException
|
|
from pydantic import BaseModel
|
|
from langdetect import detect
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import (
|
|
DistilBertTokenizer, DistilBertModel,
|
|
AutoTokenizer, AutoModel
|
|
)
|
|
|
|
|
|
|
|
class ToxicBERT(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.bert = DistilBertModel.from_pretrained("distilbert-base-uncased")
|
|
self.dropout = nn.Dropout(0.3)
|
|
self.classifier = nn.Linear(self.bert.config.hidden_size, 6)
|
|
|
|
def forward(self, input_ids, attention_mask):
|
|
output = self.bert(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state[:, 0]
|
|
return self.classifier(self.dropout(output))
|
|
|
|
class HinglishToxicClassifier(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.bert = AutoModel.from_pretrained("xlm-roberta-base")
|
|
hidden_size = self.bert.config.hidden_size
|
|
|
|
self.pool = lambda hidden: torch.cat([
|
|
hidden.mean(dim=1),
|
|
hidden.max(dim=1).values
|
|
], dim=1)
|
|
|
|
self.bottleneck = nn.Sequential(
|
|
nn.Linear(2 * hidden_size, hidden_size),
|
|
nn.ReLU(),
|
|
nn.Dropout(0.2)
|
|
)
|
|
self.classifier = nn.Linear(hidden_size, 2)
|
|
|
|
def forward(self, input_ids, attention_mask):
|
|
hidden = self.bert(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state
|
|
pooled = self.pool(hidden)
|
|
x = self.bottleneck(pooled)
|
|
return self.classifier(x)
|
|
|
|
|
|
english_tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
|
hinglish_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
english_model = ToxicBERT()
|
|
eng_url = "https://huggingface.co/koyu008/English_Toxic_Classifier/resolve/main/bert_toxic_classifier.pt"
|
|
english_model.load_state_dict(torch.hub.load_state_dict_from_url(eng_url, map_location=device))
|
|
english_model.eval().to(device)
|
|
|
|
hinglish_model = HinglishToxicClassifier()
|
|
hin_url = "https://huggingface.co/koyu008/HInglish_comment_classifier/resolve/main/best_hinglish_model.pt"
|
|
hinglish_model.load_state_dict(torch.hub.load_state_dict_from_url(hin_url, map_location=device))
|
|
hinglish_model.eval().to(device)
|
|
|
|
|
|
|
|
app = FastAPI()
|
|
|
|
class InputText(BaseModel):
|
|
text: str
|
|
|
|
@app.post("/predict")
|
|
def predict(input: InputText):
|
|
text = input.text.strip()
|
|
if not text:
|
|
raise HTTPException(status_code=400, detail="Input text cannot be empty")
|
|
|
|
|
|
try:
|
|
lang = detect(text)
|
|
except:
|
|
lang = "und"
|
|
|
|
if lang == "en":
|
|
model = english_model
|
|
tokenizer = english_tokenizer
|
|
labels = ["toxic", "severe toxic", "obscene", "threat", "insult", "identity hate"]
|
|
else:
|
|
model = hinglish_model
|
|
tokenizer = hinglish_tokenizer
|
|
labels = ["not toxic", "toxic"]
|
|
|
|
|
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
probs = torch.softmax(outputs, dim=1).squeeze().tolist()
|
|
|
|
response = {
|
|
"language": "english" if lang == "en" else "hinglish",
|
|
"prediction": {label: float(round(prob, 4)) for label, prob in zip(labels, probs)}
|
|
}
|
|
return response
|
|
|