Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
from pydantic import BaseModel | |
from langdetect import detect | |
import torch | |
import torch.nn as nn | |
from transformers import DistilBertModel, AutoModel, AutoTokenizer, DistilBertTokenizer | |
from huggingface_hub import snapshot_download | |
import os | |
# App and device | |
app = FastAPI() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Create safe local cache directory | |
hf_cache_dir = "./hf_cache" | |
os.makedirs(hf_cache_dir, exist_ok=True) | |
os.environ["TRANSFORMERS_CACHE"] = hf_cache_dir | |
# Download model repositories to local path | |
english_path = snapshot_download("koyu008/English_Toxic_Classifier", cache_dir=hf_cache_dir) | |
hinglish_path = snapshot_download("koyu008/Hinglish_comment_classifier", cache_dir=hf_cache_dir) | |
# ---------------------------- | |
# Model classes | |
# ---------------------------- | |
class ToxicBERT(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.bert = DistilBertModel.from_pretrained(english_path) | |
self.dropout = nn.Dropout(0.3) | |
self.classifier = nn.Linear(self.bert.config.hidden_size, 6) | |
def forward(self, input_ids, attention_mask): | |
output = self.bert(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state[:, 0] | |
return self.classifier(self.dropout(output)) | |
class HinglishToxicClassifier(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.bert = AutoModel.from_pretrained(hinglish_path) | |
hidden_size = self.bert.config.hidden_size | |
self.pool = lambda hidden: torch.cat([ | |
hidden.mean(dim=1), | |
hidden.max(dim=1).values | |
], dim=1) | |
self.bottleneck = nn.Sequential( | |
nn.Linear(2 * hidden_size, hidden_size), | |
nn.ReLU(), | |
nn.Dropout(0.2) | |
) | |
self.classifier = nn.Linear(hidden_size, 2) | |
def forward(self, input_ids, attention_mask): | |
hidden = self.bert(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state | |
pooled = self.pool(hidden) | |
x = self.bottleneck(pooled) | |
return self.classifier(x) | |
# ---------------------------- | |
# Load Models & Tokenizers | |
# ---------------------------- | |
english_model = ToxicBERT().to(device) | |
english_model.load_state_dict(torch.load("bert_toxic_classifier.pt", map_location=device)) | |
english_model.eval() | |
english_tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased") | |
hinglish_model = HinglishToxicClassifier().to(device) | |
hinglish_model.load_state_dict(torch.load("best_hinglish_model.pt", map_location=device)) | |
hinglish_model.eval() | |
hinglish_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base") | |
# ---------------------------- | |
# API | |
# ---------------------------- | |
class InputText(BaseModel): | |
text: str | |
async def predict(input: InputText): | |
text = input.text | |
lang = detect(text) | |
if lang == "en": | |
inputs = english_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device) | |
with torch.no_grad(): | |
logits = english_model(**inputs) | |
probs = torch.softmax(logits, dim=1).cpu().numpy().tolist()[0] | |
return { | |
"language": "english", | |
"classes": ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"], | |
"probabilities": probs | |
} | |
else: | |
inputs = hinglish_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device) | |
with torch.no_grad(): | |
logits = hinglish_model(**inputs) | |
probs = torch.softmax(logits, dim=1).cpu().numpy().tolist()[0] | |
return { | |
"language": "hinglish", | |
"classes": ["toxic", "non-toxic"], | |
"probabilities": probs | |
} | |