Spaces:
Sleeping
Sleeping
Commit
·
2fa0d66
1
Parent(s):
81f334a
changed llm2 task
Browse files
app.py
CHANGED
|
@@ -79,6 +79,7 @@ vectorstore, all_chunks, all_texts, metadatas = initialize_resources()
|
|
| 79 |
|
| 80 |
# LLMs
|
| 81 |
repharser_llm = ChatNVIDIA(model="mistralai/mistral-7b-instruct-v0.3") | StrOutputParser()
|
|
|
|
| 82 |
relevance_llm = ChatNVIDIA(model="meta/llama3-70b-instruct") | StrOutputParser()
|
| 83 |
if not os.environ.get("OPENAI_API_KEY"):
|
| 84 |
raise RuntimeError("OPENAI_API_KEY not found in environment!")
|
|
@@ -97,46 +98,39 @@ repharser_prompt = ChatPromptTemplate.from_template(
|
|
| 97 |
)
|
| 98 |
|
| 99 |
relevance_prompt = ChatPromptTemplate.from_template("""
|
| 100 |
-
You are Krishna's personal AI assistant
|
| 101 |
-
Your job is to review a user's question and a list of retrieved document chunks.
|
| 102 |
-
Identify which chunks (if any) directly help answer the question. Return **all relevant chunks**.
|
| 103 |
|
| 104 |
-
|
| 105 |
-
⚠️ Do NOT select chunks just because they include keywords or technical terms.
|
| 106 |
-
|
| 107 |
-
Exclude chunks that:
|
| 108 |
-
- Mention universities, CGPA, or education history (they show qualifications, not skills)
|
| 109 |
-
- List certifications or course names (they show credentials, not skills used)
|
| 110 |
-
- Describe goals, future plans, or job aspirations
|
| 111 |
-
- Contain tools mentioned in passing without describing actual usage
|
| 112 |
|
| 113 |
-
|
|
|
|
|
|
|
| 114 |
|
| 115 |
---
|
| 116 |
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
- Chunk D: Describes tools Krishna used in his work → ✅
|
| 124 |
|
| 125 |
Output:
|
| 126 |
{{
|
| 127 |
-
"
|
| 128 |
-
"
|
| 129 |
-
"justification": "Chunks A and D describe tools and skills Krishna has actually used."
|
| 130 |
}}
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
|
| 135 |
Output:
|
| 136 |
{{
|
| 137 |
-
"
|
| 138 |
-
"
|
| 139 |
-
"justification": "None of the chunks are related to the user's question about preferences or colors."
|
| 140 |
}}
|
| 141 |
|
| 142 |
---
|
|
@@ -149,13 +143,15 @@ User Question:
|
|
| 149 |
Chunks:
|
| 150 |
{contents}
|
| 151 |
|
| 152 |
-
Return only the JSON object.
|
| 153 |
""")
|
| 154 |
|
|
|
|
| 155 |
answer_prompt_relevant = ChatPromptTemplate.from_template(
|
| 156 |
"You are Krishna's personal AI assistant. Your job is to answer the user’s question clearly and professionally using the provided context.\n"
|
| 157 |
"Rather than copying sentences, synthesize relevant insights and explain them like a knowledgeable peer.\n\n"
|
| 158 |
"Krishna's Background:\n{profile}\n\n"
|
|
|
|
| 159 |
"Make your response rich and informative by:\n"
|
| 160 |
"- Combining relevant facts from multiple parts of the context\n"
|
| 161 |
"- Using natural, human-style language (not just bullet points)\n"
|
|
@@ -166,9 +162,10 @@ answer_prompt_relevant = ChatPromptTemplate.from_template(
|
|
| 166 |
"Answer:"
|
| 167 |
)
|
| 168 |
|
|
|
|
| 169 |
answer_prompt_fallback = ChatPromptTemplate.from_template(
|
| 170 |
"You are Krishna’s personal AI assistant. The user asked a question unrelated to Krishna’s background.\n"
|
| 171 |
-
"
|
| 172 |
"Krishna's Background:\n{profile}\n\n"
|
| 173 |
"User Question:\n{query}\n\n"
|
| 174 |
"Your Answer:"
|
|
@@ -260,16 +257,15 @@ def hybrid_retrieve(inputs, exclude_terms=None):
|
|
| 260 |
|
| 261 |
def safe_json_parse(s: str) -> Dict:
|
| 262 |
try:
|
| 263 |
-
if isinstance(s, str) and "
|
| 264 |
return json.loads(s)
|
| 265 |
except json.JSONDecodeError:
|
| 266 |
pass
|
| 267 |
return {
|
| 268 |
-
"valid_chunks": [],
|
| 269 |
"is_out_of_scope": True,
|
| 270 |
"justification": "Fallback due to invalid or missing LLM output"
|
| 271 |
}
|
| 272 |
-
|
| 273 |
# Rewrite generation
|
| 274 |
rephraser_chain = (
|
| 275 |
repharser_prompt
|
|
@@ -299,15 +295,16 @@ extract_validation_inputs = RunnableLambda(lambda x: {
|
|
| 299 |
validation_chain = (
|
| 300 |
extract_validation_inputs
|
| 301 |
| relevance_prompt
|
| 302 |
-
|
|
| 303 |
| RunnableLambda(safe_json_parse)
|
| 304 |
)
|
| 305 |
|
| 306 |
# Answer Generation
|
| 307 |
def prepare_answer_inputs(x: Dict) -> Dict:
|
| 308 |
context = KRISHNA_BIO if x["validation"]["is_out_of_scope"] else "\n\n".join(
|
| 309 |
-
[
|
| 310 |
-
|
|
|
|
| 311 |
return {
|
| 312 |
"query": x["query"],
|
| 313 |
"profile": KRISHNA_BIO,
|
|
|
|
| 79 |
|
| 80 |
# LLMs
|
| 81 |
repharser_llm = ChatNVIDIA(model="mistralai/mistral-7b-instruct-v0.3") | StrOutputParser()
|
| 82 |
+
instruct_llm = ChatNVIDIA(model="mistralai/mixtral-8x22b-instruct-v0.1") | StrOutputParser()
|
| 83 |
relevance_llm = ChatNVIDIA(model="meta/llama3-70b-instruct") | StrOutputParser()
|
| 84 |
if not os.environ.get("OPENAI_API_KEY"):
|
| 85 |
raise RuntimeError("OPENAI_API_KEY not found in environment!")
|
|
|
|
| 98 |
)
|
| 99 |
|
| 100 |
relevance_prompt = ChatPromptTemplate.from_template("""
|
| 101 |
+
You are Krishna's personal AI assistant classifier.
|
|
|
|
|
|
|
| 102 |
|
| 103 |
+
Your job is to decide whether a user's question can be meaningfully answered using the provided document chunks.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
+
Think carefully and return a JSON object with:
|
| 106 |
+
- "is_out_of_scope": true if none of the chunks contain information relevant to the question.
|
| 107 |
+
- "justification": a short sentence explaining your decision.
|
| 108 |
|
| 109 |
---
|
| 110 |
|
| 111 |
+
Rules:
|
| 112 |
+
- Chunks are snippets from Krishna’s resume, project history, and personal background.
|
| 113 |
+
- If none of the chunks contain evidence, examples, or details that directly help answer the question, mark it as out of scope.
|
| 114 |
+
- Do NOT rely on keyword matches. Use reasoning to decide whether the content actually addresses the question.
|
| 115 |
|
| 116 |
+
Examples:
|
| 117 |
+
|
| 118 |
+
Q: "What are Krishna's favorite movies?"
|
| 119 |
+
Chunks: Mostly about research, skills, and work experience.
|
|
|
|
| 120 |
|
| 121 |
Output:
|
| 122 |
{{
|
| 123 |
+
"is_out_of_scope": true,
|
| 124 |
+
"justification": "No chunk discusses Krishna's personal preferences like movies."
|
|
|
|
| 125 |
}}
|
| 126 |
|
| 127 |
+
Q: "What ML tools has Krishna used in projects?"
|
| 128 |
+
Chunks: Mentions PyTorch, Kafka, Hugging Face, Spark.
|
| 129 |
|
| 130 |
Output:
|
| 131 |
{{
|
| 132 |
+
"is_out_of_scope": false,
|
| 133 |
+
"justification": "Chunks mention tools Krishna used directly in his work."
|
|
|
|
| 134 |
}}
|
| 135 |
|
| 136 |
---
|
|
|
|
| 143 |
Chunks:
|
| 144 |
{contents}
|
| 145 |
|
| 146 |
+
Return only the JSON object.
|
| 147 |
""")
|
| 148 |
|
| 149 |
+
|
| 150 |
answer_prompt_relevant = ChatPromptTemplate.from_template(
|
| 151 |
"You are Krishna's personal AI assistant. Your job is to answer the user’s question clearly and professionally using the provided context.\n"
|
| 152 |
"Rather than copying sentences, synthesize relevant insights and explain them like a knowledgeable peer.\n\n"
|
| 153 |
"Krishna's Background:\n{profile}\n\n"
|
| 154 |
+
"Note: The context might include some unrelated or noisy information. Focus only on content that directly supports your answer.\n\n"
|
| 155 |
"Make your response rich and informative by:\n"
|
| 156 |
"- Combining relevant facts from multiple parts of the context\n"
|
| 157 |
"- Using natural, human-style language (not just bullet points)\n"
|
|
|
|
| 162 |
"Answer:"
|
| 163 |
)
|
| 164 |
|
| 165 |
+
|
| 166 |
answer_prompt_fallback = ChatPromptTemplate.from_template(
|
| 167 |
"You are Krishna’s personal AI assistant. The user asked a question unrelated to Krishna’s background.\n"
|
| 168 |
+
"Respond with a touch of humor, then guide the conversation back to Krishna’s actual skills, experiences, or projects.\n\n"
|
| 169 |
"Krishna's Background:\n{profile}\n\n"
|
| 170 |
"User Question:\n{query}\n\n"
|
| 171 |
"Your Answer:"
|
|
|
|
| 257 |
|
| 258 |
def safe_json_parse(s: str) -> Dict:
|
| 259 |
try:
|
| 260 |
+
if isinstance(s, str) and "is_out_of_scope" in s:
|
| 261 |
return json.loads(s)
|
| 262 |
except json.JSONDecodeError:
|
| 263 |
pass
|
| 264 |
return {
|
|
|
|
| 265 |
"is_out_of_scope": True,
|
| 266 |
"justification": "Fallback due to invalid or missing LLM output"
|
| 267 |
}
|
| 268 |
+
|
| 269 |
# Rewrite generation
|
| 270 |
rephraser_chain = (
|
| 271 |
repharser_prompt
|
|
|
|
| 295 |
validation_chain = (
|
| 296 |
extract_validation_inputs
|
| 297 |
| relevance_prompt
|
| 298 |
+
| instruct_llm
|
| 299 |
| RunnableLambda(safe_json_parse)
|
| 300 |
)
|
| 301 |
|
| 302 |
# Answer Generation
|
| 303 |
def prepare_answer_inputs(x: Dict) -> Dict:
|
| 304 |
context = KRISHNA_BIO if x["validation"]["is_out_of_scope"] else "\n\n".join(
|
| 305 |
+
[chunk["content"] for chunk in x["chunks"]]
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
return {
|
| 309 |
"query": x["query"],
|
| 310 |
"profile": KRISHNA_BIO,
|