Spaces:
Sleeping
Sleeping
Commit
·
889a853
1
Parent(s):
c7da115
Update app.py
Browse files
app.py
CHANGED
|
@@ -38,7 +38,7 @@ if not api_key:
|
|
| 38 |
raise RuntimeError("🚨 NVIDIA_API_KEY not found in environment! Please add it in Hugging Face Secrets.")
|
| 39 |
|
| 40 |
# Constants
|
| 41 |
-
FAISS_PATH = "faiss_store/
|
| 42 |
CHUNKS_PATH = "all_chunks.json"
|
| 43 |
|
| 44 |
if not Path(FAISS_PATH).exists():
|
|
@@ -99,6 +99,14 @@ class KnowledgeBase(BaseModel):
|
|
| 99 |
last_followups: List[str] = Field(default_factory=list, description="List of follow-up suggestions from the last assistant response")
|
| 100 |
tone: Optional[Literal['formal', 'casual', 'playful', 'direct', 'uncertain']] = Field(None, description="Inferred tone or attitude from the user based on recent input")
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
# Initialize the knowledge base
|
| 103 |
# knowledge_base = KnowledgeBase()
|
| 104 |
user_kbs = {}
|
|
@@ -106,9 +114,9 @@ kb_lock = Lock()
|
|
| 106 |
|
| 107 |
# LLMs
|
| 108 |
# repharser_llm = ChatNVIDIA(model="mistralai/mistral-7b-instruct-v0.3") | StrOutputParser()
|
| 109 |
-
repharser_llm = ChatNVIDIA(model="microsoft/phi-3-mini-4k-instruct") | StrOutputParser()
|
| 110 |
-
|
| 111 |
-
|
| 112 |
relevance_llm = ChatNVIDIA(model="nvidia/llama-3.1-nemotron-70b-instruct") | StrOutputParser()
|
| 113 |
answer_llm = ChatOpenAI(
|
| 114 |
model="gpt-4o",
|
|
@@ -121,59 +129,92 @@ answer_llm = ChatOpenAI(
|
|
| 121 |
# Prompts
|
| 122 |
repharser_prompt = ChatPromptTemplate.from_template(
|
| 123 |
"You are a smart retrieval assistant helping a search engine understand user intent more precisely.\n\n"
|
| 124 |
-
"
|
| 125 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
"Guidelines:\n"
|
| 127 |
-
"- Expand abbreviations or implied
|
| 128 |
-
"-
|
| 129 |
-
"- Rephrase using
|
| 130 |
-
"-
|
| 131 |
"- Prioritize clarity and retrievability over stylistic variation\n\n"
|
| 132 |
-
"
|
| 133 |
-
"Rewrite:\n1."
|
| 134 |
)
|
| 135 |
|
| 136 |
relevance_prompt = ChatPromptTemplate.from_template("""
|
| 137 |
-
You are Krishna's personal AI assistant classifier.
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
Return a JSON object:
|
| 140 |
-
- "is_out_of_scope": true if the
|
| 141 |
-
- "justification":
|
|
|
|
|
|
|
| 142 |
---
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
✅
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
---
|
|
|
|
| 152 |
Examples:
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
| 156 |
Output:
|
| 157 |
{{
|
| 158 |
"is_out_of_scope": false,
|
| 159 |
-
"justification": "User is
|
|
|
|
| 160 |
}}
|
|
|
|
| 161 |
Q: "What is Krishna's Hogwarts house?"
|
| 162 |
-
Chunks:
|
| 163 |
-
Memory:
|
|
|
|
| 164 |
Output:
|
| 165 |
{{
|
| 166 |
"is_out_of_scope": true,
|
| 167 |
-
"justification": "
|
| 168 |
}}
|
|
|
|
| 169 |
---
|
|
|
|
| 170 |
Now your turn.
|
| 171 |
-
|
|
|
|
| 172 |
"{query}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
Chunks:
|
| 174 |
{contents}
|
|
|
|
| 175 |
User Memory (Knowledge Base):
|
| 176 |
{memory}
|
|
|
|
| 177 |
Return ONLY the JSON object.
|
| 178 |
""")
|
| 179 |
|
|
@@ -325,16 +366,18 @@ def safe_json_parse(s: str) -> Dict:
|
|
| 325 |
# Rewrite generation
|
| 326 |
rephraser_chain = (
|
| 327 |
repharser_prompt
|
| 328 |
-
|
|
| 329 |
| RunnableLambda(parse_rewrites)
|
| 330 |
)
|
| 331 |
|
| 332 |
generate_rewrites_chain = (
|
| 333 |
RunnableAssign({
|
| 334 |
-
"rewrites": lambda x: rephraser_chain.invoke({"query": x["query"]
|
|
|
|
| 335 |
})
|
| 336 |
| RunnableAssign({
|
| 337 |
-
"all_queries": lambda x: [x["query"]] + x["rewrites"]
|
|
|
|
| 338 |
})
|
| 339 |
)
|
| 340 |
|
|
@@ -345,8 +388,11 @@ hybrid_chain = generate_rewrites_chain | retrieve_chain
|
|
| 345 |
# Validation
|
| 346 |
extract_validation_inputs = RunnableLambda(lambda x: {
|
| 347 |
"query": x["query"],
|
| 348 |
-
"
|
| 349 |
-
"
|
|
|
|
|
|
|
|
|
|
| 350 |
})
|
| 351 |
|
| 352 |
validation_chain = (
|
|
@@ -432,6 +478,19 @@ def update_knowledge_base(session_id: str, user_input: str, assistant_response:
|
|
| 432 |
print(f"✅ KNOWLEDGE BASE UPDATED FOR SESSION {session_id}")
|
| 433 |
except Exception as e:
|
| 434 |
print(f"❌ KNOWLEDGE BASE UPDATE FAILED: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 435 |
|
| 436 |
# New chain to preserve memory through the pipeline
|
| 437 |
preserve_memory_chain = RunnableLambda(lambda x: {
|
|
@@ -443,6 +502,8 @@ preserve_memory_chain = RunnableLambda(lambda x: {
|
|
| 443 |
full_pipeline = (
|
| 444 |
preserve_memory_chain
|
| 445 |
| RunnableAssign({"validation": validation_chain})
|
|
|
|
|
|
|
| 446 |
| answer_chain
|
| 447 |
)
|
| 448 |
|
|
@@ -460,7 +521,7 @@ def chat_interface(message, history, request: gr.Request):
|
|
| 460 |
"alpha": 0.5,
|
| 461 |
"vectorstore": vectorstore,
|
| 462 |
"bm25_retriever": bm25_retriever,
|
| 463 |
-
"memory": kb.
|
| 464 |
}
|
| 465 |
|
| 466 |
full_response = ""
|
|
@@ -487,11 +548,6 @@ demo = gr.ChatInterface(
|
|
| 487 |
margin: 0 auto;
|
| 488 |
width: 100%;
|
| 489 |
}
|
| 490 |
-
.gradio-container{
|
| 491 |
-
max-width: 1000px !important;
|
| 492 |
-
margin: 0 auto;
|
| 493 |
-
width:100%;
|
| 494 |
-
}
|
| 495 |
.float {
|
| 496 |
display: none;
|
| 497 |
}
|
|
@@ -511,6 +567,11 @@ demo = gr.ChatInterface(
|
|
| 511 |
width: 1px;
|
| 512 |
height: 1px;
|
| 513 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 514 |
|
| 515 |
::-webkit-scrollbar-track {
|
| 516 |
background: transparent;
|
|
|
|
| 38 |
raise RuntimeError("🚨 NVIDIA_API_KEY not found in environment! Please add it in Hugging Face Secrets.")
|
| 39 |
|
| 40 |
# Constants
|
| 41 |
+
FAISS_PATH = "faiss_store/v64_600-150"
|
| 42 |
CHUNKS_PATH = "all_chunks.json"
|
| 43 |
|
| 44 |
if not Path(FAISS_PATH).exists():
|
|
|
|
| 99 |
last_followups: List[str] = Field(default_factory=list, description="List of follow-up suggestions from the last assistant response")
|
| 100 |
tone: Optional[Literal['formal', 'casual', 'playful', 'direct', 'uncertain']] = Field(None, description="Inferred tone or attitude from the user based on recent input")
|
| 101 |
|
| 102 |
+
def dump_truncated(self, max_len: int = 500):
|
| 103 |
+
memory = self.dict()
|
| 104 |
+
if len(memory["last_input"]) > max_len:
|
| 105 |
+
memory["last_input"] = memory["last_input"][:max_len] + "..."
|
| 106 |
+
if len(memory["last_output"]) > max_len:
|
| 107 |
+
memory["last_output"] = memory["last_output"][:max_len] + "..."
|
| 108 |
+
return memory
|
| 109 |
+
|
| 110 |
# Initialize the knowledge base
|
| 111 |
# knowledge_base = KnowledgeBase()
|
| 112 |
user_kbs = {}
|
|
|
|
| 114 |
|
| 115 |
# LLMs
|
| 116 |
# repharser_llm = ChatNVIDIA(model="mistralai/mistral-7b-instruct-v0.3") | StrOutputParser()
|
| 117 |
+
#repharser_llm = ChatNVIDIA(model="microsoft/phi-3-mini-4k-instruct") | StrOutputParser()
|
| 118 |
+
instruct_llm = ChatNVIDIA(model="mistralai/mixtral-8x22b-instruct-v0.1") | StrOutputParser()
|
| 119 |
+
rephraser_llm = ChatNVIDIA(model="mistralai/mistral-7b-instruct-v0.3") | StrOutputParser()
|
| 120 |
relevance_llm = ChatNVIDIA(model="nvidia/llama-3.1-nemotron-70b-instruct") | StrOutputParser()
|
| 121 |
answer_llm = ChatOpenAI(
|
| 122 |
model="gpt-4o",
|
|
|
|
| 129 |
# Prompts
|
| 130 |
repharser_prompt = ChatPromptTemplate.from_template(
|
| 131 |
"You are a smart retrieval assistant helping a search engine understand user intent more precisely.\n\n"
|
| 132 |
+
"Your job is to rewrite the user's message into a clearer, more descriptive query for information retrieval.\n\n"
|
| 133 |
+
"Context:\n"
|
| 134 |
+
"- The user may sometimes respond with short or vague messages like 'B', 'yes', or 'tell me more'.\n"
|
| 135 |
+
"- In such cases, refer to the user's previous assistant message or `last_followups` list to understand the actual intent.\n"
|
| 136 |
+
"- Expand their reply based on that context to create a full meaningful query.\n\n"
|
| 137 |
+
"User Query:\n{query}\n\n"
|
| 138 |
+
"Last Follow-up Suggestions:\n{memory}\n\n"
|
| 139 |
"Guidelines:\n"
|
| 140 |
+
"- Expand abbreviations or implied selections\n"
|
| 141 |
+
"- Reconstruct full intent if the query is a reply to an earlier assistant suggestion\n"
|
| 142 |
+
"- Rephrase using domain-specific terms (e.g., ML, infrastructure, research, deployment)\n"
|
| 143 |
+
"- Focus on maximizing retrievability via keyword-rich formulation\n\n"
|
| 144 |
"- Prioritize clarity and retrievability over stylistic variation\n\n"
|
| 145 |
+
"Expanded Rewrite:\n1."
|
|
|
|
| 146 |
)
|
| 147 |
|
| 148 |
relevance_prompt = ChatPromptTemplate.from_template("""
|
| 149 |
+
You are Krishna's personal AI assistant classifier and chunk reranker.
|
| 150 |
+
|
| 151 |
+
Your job has two goals:
|
| 152 |
+
1. Classify whether a user's question can be meaningfully answered using the retrieved document chunks or user memory.
|
| 153 |
+
2. If it can, rerank the chunks from most to least relevant to the question.
|
| 154 |
+
|
| 155 |
Return a JSON object:
|
| 156 |
+
- "is_out_of_scope": true if the **rewritten query**, original query, and memory offer no path to answer the user’s intent
|
| 157 |
+
- "justification": short explanation of your decision
|
| 158 |
+
- "reranked_chunks": a list of chunk indices ordered by decreasing relevance (only if in-scope)
|
| 159 |
+
|
| 160 |
---
|
| 161 |
+
|
| 162 |
+
Special Instructions:
|
| 163 |
+
|
| 164 |
+
✅ If the user input is vague, short, or a follow-up (e.g., "yes", "A", "B", "go on", "sure"), check:
|
| 165 |
+
• If the assistant previously showed suggestions or follow-up questions (in memory → `last_followups`)
|
| 166 |
+
• If the rewritten query adds meaningful context (e.g., "B" → "Tell me more about Data-Centric AI")
|
| 167 |
+
|
| 168 |
+
If **any of the above** resolve the intent, treat it as in-scope.
|
| 169 |
+
|
| 170 |
+
❌ Mark as out-of-scope only if:
|
| 171 |
+
- The query (even after rewriting) has no clear relevance to Krishna's profile or user memory
|
| 172 |
+
- There are no helpful document chunks or memory fields to answer it
|
| 173 |
+
|
| 174 |
+
🚫 Do not infer meaning through metaphor or vague similarity — only use concrete, literal context.
|
| 175 |
+
|
| 176 |
---
|
| 177 |
+
|
| 178 |
Examples:
|
| 179 |
+
|
| 180 |
+
Q: "B"
|
| 181 |
+
Rewritten Query: "Tell me more about Data-Centric AI for Real-Time Analytics"
|
| 182 |
+
last_followups: [ ... contains that option ... ]
|
| 183 |
+
Memory: user showed interest in analytics pipelines
|
| 184 |
+
|
| 185 |
Output:
|
| 186 |
{{
|
| 187 |
"is_out_of_scope": false,
|
| 188 |
+
"justification": "User is selecting a previous assistant suggestion",
|
| 189 |
+
"reranked_chunks": [0, 2, 1]
|
| 190 |
}}
|
| 191 |
+
|
| 192 |
Q: "What is Krishna's Hogwarts house?"
|
| 193 |
+
Chunks: none on fiction
|
| 194 |
+
Memory: no fantasy topics
|
| 195 |
+
|
| 196 |
Output:
|
| 197 |
{{
|
| 198 |
"is_out_of_scope": true,
|
| 199 |
+
"justification": "Fictional topic unrelated to Krishna or conversation"
|
| 200 |
}}
|
| 201 |
+
|
| 202 |
---
|
| 203 |
+
|
| 204 |
Now your turn.
|
| 205 |
+
|
| 206 |
+
Original User Question:
|
| 207 |
"{query}"
|
| 208 |
+
|
| 209 |
+
Rewritten Query (if available):
|
| 210 |
+
"{rewritten_query}"
|
| 211 |
+
|
| 212 |
Chunks:
|
| 213 |
{contents}
|
| 214 |
+
|
| 215 |
User Memory (Knowledge Base):
|
| 216 |
{memory}
|
| 217 |
+
|
| 218 |
Return ONLY the JSON object.
|
| 219 |
""")
|
| 220 |
|
|
|
|
| 366 |
# Rewrite generation
|
| 367 |
rephraser_chain = (
|
| 368 |
repharser_prompt
|
| 369 |
+
| rephraser_llm
|
| 370 |
| RunnableLambda(parse_rewrites)
|
| 371 |
)
|
| 372 |
|
| 373 |
generate_rewrites_chain = (
|
| 374 |
RunnableAssign({
|
| 375 |
+
"rewrites": lambda x: rephraser_chain.invoke({"query": x["query"],
|
| 376 |
+
"memory": x["memory"]})
|
| 377 |
})
|
| 378 |
| RunnableAssign({
|
| 379 |
+
"all_queries": lambda x: [x["query"]] + x["rewrites"],
|
| 380 |
+
"rewritten_query": lambda x: x["rewrites"][0] if x["rewrites"] else x["query"]
|
| 381 |
})
|
| 382 |
)
|
| 383 |
|
|
|
|
| 388 |
# Validation
|
| 389 |
extract_validation_inputs = RunnableLambda(lambda x: {
|
| 390 |
"query": x["query"],
|
| 391 |
+
"rewritten_query": x.get("rewritten_query", x["query"]),
|
| 392 |
+
"contents": "\n".join(
|
| 393 |
+
f"Chunk #{i}: {chunk['content']}" for i, chunk in enumerate(x["chunks"])
|
| 394 |
+
),
|
| 395 |
+
"memory": json.dumps(x["memory"])
|
| 396 |
})
|
| 397 |
|
| 398 |
validation_chain = (
|
|
|
|
| 478 |
print(f"✅ KNOWLEDGE BASE UPDATED FOR SESSION {session_id}")
|
| 479 |
except Exception as e:
|
| 480 |
print(f"❌ KNOWLEDGE BASE UPDATE FAILED: {str(e)}")
|
| 481 |
+
|
| 482 |
+
def reorder_chunks_if_needed(inputs):
|
| 483 |
+
validation = inputs.get("validation", {})
|
| 484 |
+
chunks = inputs.get("chunks", [])
|
| 485 |
+
|
| 486 |
+
if not validation.get("is_out_of_scope", True) and "reranked_chunks" in validation:
|
| 487 |
+
try:
|
| 488 |
+
ranked_indices = validation["reranked_chunks"]
|
| 489 |
+
inputs["chunks"] = [chunks[i] for i in ranked_indices if i < len(chunks)]
|
| 490 |
+
except Exception as e:
|
| 491 |
+
print("⚠️ Failed to reorder chunks:", e)
|
| 492 |
+
|
| 493 |
+
return inputs
|
| 494 |
|
| 495 |
# New chain to preserve memory through the pipeline
|
| 496 |
preserve_memory_chain = RunnableLambda(lambda x: {
|
|
|
|
| 502 |
full_pipeline = (
|
| 503 |
preserve_memory_chain
|
| 504 |
| RunnableAssign({"validation": validation_chain})
|
| 505 |
+
| RunnableLambda(reorder_chunks_if_needed)
|
| 506 |
+
#| PPrint()
|
| 507 |
| answer_chain
|
| 508 |
)
|
| 509 |
|
|
|
|
| 521 |
"alpha": 0.5,
|
| 522 |
"vectorstore": vectorstore,
|
| 523 |
"bm25_retriever": bm25_retriever,
|
| 524 |
+
"memory": json.dumps(kb.dump_truncated())
|
| 525 |
}
|
| 526 |
|
| 527 |
full_response = ""
|
|
|
|
| 548 |
margin: 0 auto;
|
| 549 |
width: 100%;
|
| 550 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 551 |
.float {
|
| 552 |
display: none;
|
| 553 |
}
|
|
|
|
| 567 |
width: 1px;
|
| 568 |
height: 1px;
|
| 569 |
}
|
| 570 |
+
.gradio-container{
|
| 571 |
+
max-width: 1000px !important;
|
| 572 |
+
margin: 0 auto;
|
| 573 |
+
width:100%;
|
| 574 |
+
}
|
| 575 |
|
| 576 |
::-webkit-scrollbar-track {
|
| 577 |
background: transparent;
|