Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
+
from ultralytics import YOLO
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
# Define repository and file path
|
9 |
+
repo_id = "krishnamishra8848/Face_Mask_Detection"
|
10 |
+
filename = "best.pt" # File name in your Hugging Face repo
|
11 |
+
|
12 |
+
# Download the model file
|
13 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
14 |
+
|
15 |
+
# Load the YOLO model
|
16 |
+
model = YOLO(model_path)
|
17 |
+
|
18 |
+
# Streamlit UI
|
19 |
+
st.title("Face Mask Detection with YOLOv8")
|
20 |
+
st.write("Upload an image to detect face masks.")
|
21 |
+
|
22 |
+
# File upload
|
23 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
24 |
+
|
25 |
+
if uploaded_file:
|
26 |
+
# Load image
|
27 |
+
image = Image.open(uploaded_file)
|
28 |
+
image_np = np.array(image)
|
29 |
+
|
30 |
+
# Run inference
|
31 |
+
st.write("Running inference...")
|
32 |
+
results = model.predict(source=image_np, conf=0.5)
|
33 |
+
|
34 |
+
# Annotate image
|
35 |
+
annotated_image = None
|
36 |
+
for result in results:
|
37 |
+
annotated_image = result.plot()
|
38 |
+
|
39 |
+
# Convert annotated image for Streamlit
|
40 |
+
if annotated_image is not None:
|
41 |
+
annotated_image_rgb = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
42 |
+
st.image(annotated_image_rgb, caption="Prediction Results", use_column_width=True)
|
43 |
+
|
44 |
+
# Display bounding boxes and confidence scores
|
45 |
+
st.write("Detection Results:")
|
46 |
+
for result in results:
|
47 |
+
for box in result.boxes.data.cpu().numpy():
|
48 |
+
x1, y1, x2, y2, conf, cls = box
|
49 |
+
st.write(f"Class: {int(cls)}, Confidence: {conf:.2f}, Box: [{x1:.0f}, {y1:.0f}, {x2:.0f}, {y2:.0f}]")
|