Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -339,6 +339,277 @@ class GradioInterface:
|
|
339 |
|
340 |
return demo
|
341 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
def main():
|
343 |
try:
|
344 |
interface = GradioInterface()
|
|
|
339 |
|
340 |
return demo
|
341 |
|
342 |
+
from pathlib import Path
|
343 |
+
import io
|
344 |
+
import json
|
345 |
+
import math
|
346 |
+
import statistics
|
347 |
+
import sys
|
348 |
+
import time
|
349 |
+
|
350 |
+
from datasets import concatenate_datasets, Dataset
|
351 |
+
from datasets import load_dataset
|
352 |
+
|
353 |
+
from huggingface_hub import hf_hub_url
|
354 |
+
|
355 |
+
import pandas as pd
|
356 |
+
import numpy as np
|
357 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
358 |
+
from evaluate import load
|
359 |
+
|
360 |
+
|
361 |
+
# 1. record each file name included
|
362 |
+
# 1.1 read different file formats depending on parameters (i.e., filetype)
|
363 |
+
# 2. determine column types and report how many rows for each type (format check)
|
364 |
+
# (in a well-formatted dataset, each column should only have one type)
|
365 |
+
# 3. report on the null values
|
366 |
+
# 4. for certain column types, report statistics
|
367 |
+
# 4.1 uniqueness: if all rows are of a small number of <string> values, treat the column as 'categorical' < 10.
|
368 |
+
# 4.2 strings: length ranges
|
369 |
+
# 4.3 lists: length ranges
|
370 |
+
# 4.3 int/float/double: their percentiles, min, max, mean
|
371 |
+
|
372 |
+
CELL_TYPES_LENGTH = ["<class 'str'>", "<class 'list'>"]
|
373 |
+
CELL_TYPES_NUMERIC = ["<class 'int'>", "<class 'float'>"]
|
374 |
+
|
375 |
+
PERCENTILES = [1, 5, 10, 25, 50, 100, 250, 500, 750, 900, 950, 975, 990, 995, 999]
|
376 |
+
|
377 |
+
def read_data(all_files, filetype):
|
378 |
+
df = None
|
379 |
+
|
380 |
+
func_name = ""
|
381 |
+
|
382 |
+
if filetype in ["parquet", "csv", "json"]:
|
383 |
+
if filetype == "parquet":
|
384 |
+
func_name = pd.read_parquet
|
385 |
+
elif filetype == "csv":
|
386 |
+
func_name = pd.read_csv
|
387 |
+
elif filetype == "json":
|
388 |
+
func_name = pd.read_json
|
389 |
+
|
390 |
+
df = pd.concat(func_name(f) for f in all_files)
|
391 |
+
|
392 |
+
elif filetype == "arrow":
|
393 |
+
ds = concatenate_datasets([Dataset.from_file(str(fname)) for fname in all_files])
|
394 |
+
df = pd.DataFrame(data=ds)
|
395 |
+
|
396 |
+
elif filetype == "jsonl":
|
397 |
+
func_name = pd.read_json
|
398 |
+
all_lines = []
|
399 |
+
for fname in all_files:
|
400 |
+
with open(fname, "r") as f:
|
401 |
+
all_lines.extend(f.readlines())
|
402 |
+
|
403 |
+
df = pd.concat([pd.DataFrame.from_dict([json.loads(line)]) for line in all_lines])
|
404 |
+
|
405 |
+
return df
|
406 |
+
|
407 |
+
def compute_cell_length_ranges(cell_lengths, cell_unique_string_values):
|
408 |
+
cell_length_ranges = {}
|
409 |
+
cell_length_ranges = {}
|
410 |
+
string_categorical = {}
|
411 |
+
# this is probably a 'categorical' (i.e., 'classes' in HuggingFace) value
|
412 |
+
# with few unique items (need to check that while reading the cell),
|
413 |
+
# so no need to treat it as a normal string
|
414 |
+
if len(cell_unique_string_values) > 0 and len(cell_unique_string_values) <= 10:
|
415 |
+
string_categorical = str(len(cell_unique_string_values)) + " class(es)"
|
416 |
+
|
417 |
+
elif cell_lengths:
|
418 |
+
cell_lengths = sorted(cell_lengths)
|
419 |
+
min_val = cell_lengths[0]
|
420 |
+
max_val = cell_lengths[-1]
|
421 |
+
distance = math.ceil((max_val - min_val) / 10.0)
|
422 |
+
ranges = []
|
423 |
+
if min_val != max_val:
|
424 |
+
for j in range(min_val, max_val, distance):
|
425 |
+
ranges.append(j)
|
426 |
+
for j in range(len(ranges)-1):
|
427 |
+
cell_length_ranges[str(ranges[j]) + "-" + str(ranges[j+1])] = 0
|
428 |
+
ranges.append(max_val)
|
429 |
+
|
430 |
+
j = 1
|
431 |
+
c = 0
|
432 |
+
for k in cell_lengths:
|
433 |
+
if j == len(ranges):
|
434 |
+
c += 1
|
435 |
+
elif k < ranges[j]:
|
436 |
+
c += 1
|
437 |
+
else:
|
438 |
+
cell_length_ranges[str(ranges[j-1]) + "-" + str(ranges[j])] = c
|
439 |
+
j += 1
|
440 |
+
c = 1
|
441 |
+
|
442 |
+
cell_length_ranges[str(ranges[j-1]) + "-" + str(max_val)] = c
|
443 |
+
|
444 |
+
else:
|
445 |
+
ranges = [min_val]
|
446 |
+
c = 0
|
447 |
+
for k in cell_lengths:
|
448 |
+
c += 1
|
449 |
+
cell_length_ranges[str(min_val)] = c
|
450 |
+
|
451 |
+
return cell_length_ranges, string_categorical
|
452 |
+
|
453 |
+
def _compute_percentiles(values, percentiles=PERCENTILES):
|
454 |
+
result = {}
|
455 |
+
quantiles = statistics.quantiles(values, n=max(PERCENTILES)+1, method='inclusive')
|
456 |
+
for p in percentiles:
|
457 |
+
result[p/10] = quantiles[p-1]
|
458 |
+
return result
|
459 |
+
|
460 |
+
def compute_cell_value_statistics(cell_values):
|
461 |
+
stats = {}
|
462 |
+
if cell_values:
|
463 |
+
cell_values = sorted(cell_values)
|
464 |
+
|
465 |
+
stats["min"] = cell_values[0]
|
466 |
+
stats["max"] = cell_values[-1]
|
467 |
+
stats["mean"] = statistics.mean(cell_values)
|
468 |
+
stats["stdev"] = statistics.stdev(cell_values)
|
469 |
+
stats["variance"] = statistics.variance(cell_values)
|
470 |
+
|
471 |
+
stats["percentiles"] = _compute_percentiles(cell_values)
|
472 |
+
|
473 |
+
return stats
|
474 |
+
|
475 |
+
def check_null(cell, cell_type):
|
476 |
+
if cell_type == "<class 'float'>":
|
477 |
+
if math.isnan(cell):
|
478 |
+
return True
|
479 |
+
elif cell is None:
|
480 |
+
return True
|
481 |
+
return False
|
482 |
+
|
483 |
+
def compute_property(data_path, glob, filetype):
|
484 |
+
output = {}
|
485 |
+
|
486 |
+
data_dir = Path(data_path)
|
487 |
+
|
488 |
+
filenames = []
|
489 |
+
all_files = list(data_dir.glob(glob))
|
490 |
+
for f in all_files:
|
491 |
+
print(str(f))
|
492 |
+
base_fname = str(f)[len(str(data_path)):]
|
493 |
+
if not data_path.endswith("/"):
|
494 |
+
base_fname = base_fname[1:]
|
495 |
+
filenames.append(base_fname)
|
496 |
+
|
497 |
+
output["filenames"] = filenames
|
498 |
+
|
499 |
+
df = read_data(all_files, filetype)
|
500 |
+
|
501 |
+
column_info = {}
|
502 |
+
|
503 |
+
for col_name in df.columns:
|
504 |
+
if col_name not in column_info:
|
505 |
+
column_info[col_name] = {}
|
506 |
+
|
507 |
+
cell_types = {}
|
508 |
+
|
509 |
+
cell_lengths = {}
|
510 |
+
cell_unique_string_values = {}
|
511 |
+
cell_values = {}
|
512 |
+
null_count = 0
|
513 |
+
col_values = df[col_name].to_list()
|
514 |
+
for cell in col_values:
|
515 |
+
# for index, row in df.iterrows():
|
516 |
+
# cell = row[col_name]
|
517 |
+
cell_type = str(type(cell))
|
518 |
+
cell_type = str(type(cell))
|
519 |
+
# print(cell, cell_type)
|
520 |
+
if check_null(cell, cell_type):
|
521 |
+
null_count += 1
|
522 |
+
continue
|
523 |
+
|
524 |
+
if cell_type not in cell_types:
|
525 |
+
cell_types[cell_type] = 1
|
526 |
+
else:
|
527 |
+
cell_types[cell_type] += 1
|
528 |
+
|
529 |
+
if cell_type in CELL_TYPES_LENGTH:
|
530 |
+
cell_length = len(cell)
|
531 |
+
if cell_type not in cell_lengths:
|
532 |
+
cell_lengths[cell_type] = []
|
533 |
+
|
534 |
+
cell_lengths[cell_type].append(cell_length)
|
535 |
+
if cell_type == "<class 'str'>" and cell not in cell_unique_string_values:
|
536 |
+
cell_unique_string_values[cell] = True
|
537 |
+
|
538 |
+
elif cell_type in CELL_TYPES_NUMERIC:
|
539 |
+
if cell_type not in cell_values:
|
540 |
+
cell_values[cell_type] = []
|
541 |
+
|
542 |
+
cell_values[cell_type].append(cell)
|
543 |
+
|
544 |
+
else:
|
545 |
+
print(cell_type)
|
546 |
+
|
547 |
+
clrs = {}
|
548 |
+
ccs = {}
|
549 |
+
for cell_type in CELL_TYPES_LENGTH:
|
550 |
+
if cell_type in cell_lengths:
|
551 |
+
clr, cc = compute_cell_length_ranges(cell_lengths[cell_type], cell_unique_string_values)
|
552 |
+
clrs[cell_type] = clr
|
553 |
+
ccs[cell_type] = cc
|
554 |
+
|
555 |
+
css = {}
|
556 |
+
for cell_type in CELL_TYPES_NUMERIC:
|
557 |
+
if cell_type in cell_values:
|
558 |
+
cell_stats = compute_cell_value_statistics(cell_values[cell_type])
|
559 |
+
css[cell_type] = cell_stats
|
560 |
+
|
561 |
+
column_info[col_name]["cell_types"] = cell_types
|
562 |
+
column_info[col_name]["cell_length_ranges"] = clrs
|
563 |
+
column_info[col_name]["cell_categories"] = ccs
|
564 |
+
column_info[col_name]["cell_stats"] = css
|
565 |
+
column_info[col_name]["cell_missing"] = null_count
|
566 |
+
|
567 |
+
output["column_info"] = column_info
|
568 |
+
output["number_of_items"] = len(df)
|
569 |
+
output["timestamp"] = time.time()
|
570 |
+
|
571 |
+
return output
|
572 |
+
|
573 |
+
def preprocess_function(examples):
|
574 |
+
return tokenizer(examples["sentence1"], examples["sentence2"], truncation=True)
|
575 |
+
|
576 |
+
def compute_metrics(eval_pred):
|
577 |
+
predictions, labels = eval_pred
|
578 |
+
predictions = np.argmax(predictions, axis=1)
|
579 |
+
return metric.compute(predictions=predictions, references=labels)
|
580 |
+
|
581 |
+
def compute_model_card_evaluation_results(tokenizer, model_checkpoint, raw_datasets, metric):
|
582 |
+
tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)
|
583 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=2)
|
584 |
+
batch_size = 16
|
585 |
+
args = TrainingArguments(
|
586 |
+
"test-glue",
|
587 |
+
evaluation_strategy = "epoch",
|
588 |
+
learning_rate=5e-5,
|
589 |
+
seed=42,
|
590 |
+
lr_scheduler_type="linear",
|
591 |
+
per_device_train_batch_size=batch_size,
|
592 |
+
per_device_eval_batch_size=batch_size,
|
593 |
+
num_train_epochs=3,
|
594 |
+
weight_decay=0.01,
|
595 |
+
load_best_model_at_end=False,
|
596 |
+
metric_for_best_model="accuracy",
|
597 |
+
report_to="none"
|
598 |
+
)
|
599 |
+
|
600 |
+
trainer = Trainer(
|
601 |
+
model,
|
602 |
+
args,
|
603 |
+
train_dataset=tokenized_datasets["train"],
|
604 |
+
eval_dataset=tokenized_datasets["validation"],
|
605 |
+
tokenizer=tokenizer,
|
606 |
+
compute_metrics=compute_metrics
|
607 |
+
)
|
608 |
+
result = trainer.evaluate()
|
609 |
+
return result
|
610 |
+
|
611 |
+
|
612 |
+
|
613 |
def main():
|
614 |
try:
|
615 |
interface = GradioInterface()
|