Spaces:
Sleeping
Sleeping
Update compute_model_property.py
Browse files- compute_model_property.py +2 -253
compute_model_property.py
CHANGED
@@ -24,217 +24,6 @@ metric = load("glue", "mrpc")
|
|
24 |
|
25 |
app = FastAPI()
|
26 |
|
27 |
-
# 1. record each file name included
|
28 |
-
# 1.1 read different file formats depending on parameters (i.e., filetype)
|
29 |
-
# 2. determine column types and report how many rows for each type (format check)
|
30 |
-
# (in a well-formatted dataset, each column should only have one type)
|
31 |
-
# 3. report on the null values
|
32 |
-
# 4. for certain column types, report statistics
|
33 |
-
# 4.1 uniqueness: if all rows are of a small number of <string> values, treat the column as 'categorical' < 10.
|
34 |
-
# 4.2 strings: length ranges
|
35 |
-
# 4.3 lists: length ranges
|
36 |
-
# 4.3 int/float/double: their percentiles, min, max, mean
|
37 |
-
|
38 |
-
CELL_TYPES_LENGTH = ["<class 'str'>", "<class 'list'>"]
|
39 |
-
CELL_TYPES_NUMERIC = ["<class 'int'>", "<class 'float'>"]
|
40 |
-
|
41 |
-
PERCENTILES = [1, 5, 10, 25, 50, 100, 250, 500, 750, 900, 950, 975, 990, 995, 999]
|
42 |
-
|
43 |
-
def read_data(all_files, filetype):
|
44 |
-
df = None
|
45 |
-
|
46 |
-
func_name = ""
|
47 |
-
|
48 |
-
if filetype in ["parquet", "csv", "json"]:
|
49 |
-
if filetype == "parquet":
|
50 |
-
func_name = pd.read_parquet
|
51 |
-
elif filetype == "csv":
|
52 |
-
func_name = pd.read_csv
|
53 |
-
elif filetype == "json":
|
54 |
-
func_name = pd.read_json
|
55 |
-
|
56 |
-
df = pd.concat(func_name(f) for f in all_files)
|
57 |
-
|
58 |
-
elif filetype == "arrow":
|
59 |
-
ds = concatenate_datasets([Dataset.from_file(str(fname)) for fname in all_files])
|
60 |
-
df = pd.DataFrame(data=ds)
|
61 |
-
|
62 |
-
elif filetype == "jsonl":
|
63 |
-
func_name = pd.read_json
|
64 |
-
all_lines = []
|
65 |
-
for fname in all_files:
|
66 |
-
with open(fname, "r") as f:
|
67 |
-
all_lines.extend(f.readlines())
|
68 |
-
|
69 |
-
df = pd.concat([pd.DataFrame.from_dict([json.loads(line)]) for line in all_lines])
|
70 |
-
|
71 |
-
return df
|
72 |
-
|
73 |
-
def compute_cell_length_ranges(cell_lengths, cell_unique_string_values):
|
74 |
-
cell_length_ranges = {}
|
75 |
-
cell_length_ranges = {}
|
76 |
-
string_categorical = {}
|
77 |
-
# this is probably a 'categorical' (i.e., 'classes' in HuggingFace) value
|
78 |
-
# with few unique items (need to check that while reading the cell),
|
79 |
-
# so no need to treat it as a normal string
|
80 |
-
if len(cell_unique_string_values) > 0 and len(cell_unique_string_values) <= 10:
|
81 |
-
string_categorical = str(len(cell_unique_string_values)) + " class(es)"
|
82 |
-
|
83 |
-
elif cell_lengths:
|
84 |
-
cell_lengths = sorted(cell_lengths)
|
85 |
-
min_val = cell_lengths[0]
|
86 |
-
max_val = cell_lengths[-1]
|
87 |
-
distance = math.ceil((max_val - min_val) / 10.0)
|
88 |
-
ranges = []
|
89 |
-
if min_val != max_val:
|
90 |
-
for j in range(min_val, max_val, distance):
|
91 |
-
ranges.append(j)
|
92 |
-
for j in range(len(ranges)-1):
|
93 |
-
cell_length_ranges[str(ranges[j]) + "-" + str(ranges[j+1])] = 0
|
94 |
-
ranges.append(max_val)
|
95 |
-
|
96 |
-
j = 1
|
97 |
-
c = 0
|
98 |
-
for k in cell_lengths:
|
99 |
-
if j == len(ranges):
|
100 |
-
c += 1
|
101 |
-
elif k < ranges[j]:
|
102 |
-
c += 1
|
103 |
-
else:
|
104 |
-
cell_length_ranges[str(ranges[j-1]) + "-" + str(ranges[j])] = c
|
105 |
-
j += 1
|
106 |
-
c = 1
|
107 |
-
|
108 |
-
cell_length_ranges[str(ranges[j-1]) + "-" + str(max_val)] = c
|
109 |
-
|
110 |
-
else:
|
111 |
-
ranges = [min_val]
|
112 |
-
c = 0
|
113 |
-
for k in cell_lengths:
|
114 |
-
c += 1
|
115 |
-
cell_length_ranges[str(min_val)] = c
|
116 |
-
|
117 |
-
return cell_length_ranges, string_categorical
|
118 |
-
|
119 |
-
def _compute_percentiles(values, percentiles=PERCENTILES):
|
120 |
-
result = {}
|
121 |
-
quantiles = statistics.quantiles(values, n=max(PERCENTILES)+1, method='inclusive')
|
122 |
-
for p in percentiles:
|
123 |
-
result[p/10] = quantiles[p-1]
|
124 |
-
return result
|
125 |
-
|
126 |
-
def compute_cell_value_statistics(cell_values):
|
127 |
-
stats = {}
|
128 |
-
if cell_values:
|
129 |
-
cell_values = sorted(cell_values)
|
130 |
-
|
131 |
-
stats["min"] = cell_values[0]
|
132 |
-
stats["max"] = cell_values[-1]
|
133 |
-
stats["mean"] = statistics.mean(cell_values)
|
134 |
-
stats["stdev"] = statistics.stdev(cell_values)
|
135 |
-
stats["variance"] = statistics.variance(cell_values)
|
136 |
-
|
137 |
-
stats["percentiles"] = _compute_percentiles(cell_values)
|
138 |
-
|
139 |
-
return stats
|
140 |
-
|
141 |
-
def check_null(cell, cell_type):
|
142 |
-
if cell_type == "<class 'float'>":
|
143 |
-
if math.isnan(cell):
|
144 |
-
return True
|
145 |
-
elif cell is None:
|
146 |
-
return True
|
147 |
-
return False
|
148 |
-
|
149 |
-
def compute_property(data_path, glob, filetype):
|
150 |
-
output = {}
|
151 |
-
|
152 |
-
data_dir = Path(data_path)
|
153 |
-
|
154 |
-
filenames = []
|
155 |
-
all_files = list(data_dir.glob(glob))
|
156 |
-
for f in all_files:
|
157 |
-
print(str(f))
|
158 |
-
base_fname = str(f)[len(str(data_path)):]
|
159 |
-
if not data_path.endswith("/"):
|
160 |
-
base_fname = base_fname[1:]
|
161 |
-
filenames.append(base_fname)
|
162 |
-
|
163 |
-
output["filenames"] = filenames
|
164 |
-
|
165 |
-
df = read_data(all_files, filetype)
|
166 |
-
|
167 |
-
column_info = {}
|
168 |
-
|
169 |
-
for col_name in df.columns:
|
170 |
-
if col_name not in column_info:
|
171 |
-
column_info[col_name] = {}
|
172 |
-
|
173 |
-
cell_types = {}
|
174 |
-
|
175 |
-
cell_lengths = {}
|
176 |
-
cell_unique_string_values = {}
|
177 |
-
cell_values = {}
|
178 |
-
null_count = 0
|
179 |
-
col_values = df[col_name].to_list()
|
180 |
-
for cell in col_values:
|
181 |
-
# for index, row in df.iterrows():
|
182 |
-
# cell = row[col_name]
|
183 |
-
cell_type = str(type(cell))
|
184 |
-
cell_type = str(type(cell))
|
185 |
-
# print(cell, cell_type)
|
186 |
-
if check_null(cell, cell_type):
|
187 |
-
null_count += 1
|
188 |
-
continue
|
189 |
-
|
190 |
-
if cell_type not in cell_types:
|
191 |
-
cell_types[cell_type] = 1
|
192 |
-
else:
|
193 |
-
cell_types[cell_type] += 1
|
194 |
-
|
195 |
-
if cell_type in CELL_TYPES_LENGTH:
|
196 |
-
cell_length = len(cell)
|
197 |
-
if cell_type not in cell_lengths:
|
198 |
-
cell_lengths[cell_type] = []
|
199 |
-
|
200 |
-
cell_lengths[cell_type].append(cell_length)
|
201 |
-
if cell_type == "<class 'str'>" and cell not in cell_unique_string_values:
|
202 |
-
cell_unique_string_values[cell] = True
|
203 |
-
|
204 |
-
elif cell_type in CELL_TYPES_NUMERIC:
|
205 |
-
if cell_type not in cell_values:
|
206 |
-
cell_values[cell_type] = []
|
207 |
-
|
208 |
-
cell_values[cell_type].append(cell)
|
209 |
-
|
210 |
-
else:
|
211 |
-
print(cell_type)
|
212 |
-
|
213 |
-
clrs = {}
|
214 |
-
ccs = {}
|
215 |
-
for cell_type in CELL_TYPES_LENGTH:
|
216 |
-
if cell_type in cell_lengths:
|
217 |
-
clr, cc = compute_cell_length_ranges(cell_lengths[cell_type], cell_unique_string_values)
|
218 |
-
clrs[cell_type] = clr
|
219 |
-
ccs[cell_type] = cc
|
220 |
-
|
221 |
-
css = {}
|
222 |
-
for cell_type in CELL_TYPES_NUMERIC:
|
223 |
-
if cell_type in cell_values:
|
224 |
-
cell_stats = compute_cell_value_statistics(cell_values[cell_type])
|
225 |
-
css[cell_type] = cell_stats
|
226 |
-
|
227 |
-
column_info[col_name]["cell_types"] = cell_types
|
228 |
-
column_info[col_name]["cell_length_ranges"] = clrs
|
229 |
-
column_info[col_name]["cell_categories"] = ccs
|
230 |
-
column_info[col_name]["cell_stats"] = css
|
231 |
-
column_info[col_name]["cell_missing"] = null_count
|
232 |
-
|
233 |
-
output["column_info"] = column_info
|
234 |
-
output["number_of_items"] = len(df)
|
235 |
-
output["timestamp"] = time.time()
|
236 |
-
|
237 |
-
return output
|
238 |
|
239 |
def preprocess_function(examples):
|
240 |
tokenizer = AutoTokenizer.from_pretrained("sgugger/glue-mrpc")
|
@@ -289,7 +78,7 @@ def api_home():
|
|
289 |
return {'detail': 'Welcome to Bastions Model evaluation!'}
|
290 |
|
291 |
@app.post("/api/evaluate", summary = "Input dataset and model identifiers", tags = ["Test API"])
|
292 |
-
def return_output():
|
293 |
|
294 |
model_checkpoint = "sgugger/glue-mrpc"
|
295 |
dataset_name = "nyu-mll/glue"
|
@@ -302,44 +91,4 @@ def return_output():
|
|
302 |
#tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
303 |
output = compute_model_card_evaluation_results(model_checkpoint, raw_datasets, metric)
|
304 |
|
305 |
-
return output
|
306 |
-
|
307 |
-
#if __name__ == "__main__":
|
308 |
-
# uvicorn.run(app, host="0.0.0.0", port=8080, log_level="debug")
|
309 |
-
|
310 |
-
"""
|
311 |
-
in_container = True
|
312 |
-
|
313 |
-
|
314 |
-
if len(sys.argv) > 1:
|
315 |
-
model_checkpoint = sys.argv[1]
|
316 |
-
dataset_name = sys.argv[2]
|
317 |
-
metric = sys.argv[3]
|
318 |
-
in_container = False
|
319 |
-
else:
|
320 |
-
model_checkpoint = "sgugger/glue-mrpc"
|
321 |
-
dataset_name = "nyu-mll/glue"
|
322 |
-
metric = ["glue", "mrpc"]
|
323 |
-
in_container = False
|
324 |
-
|
325 |
-
|
326 |
-
model_checkpoint = "sgugger/glue-mrpc"
|
327 |
-
dataset_name = "nyu-mll/glue"
|
328 |
-
metric = ["glue", "mrpc"]
|
329 |
-
|
330 |
-
print(model_checkpoint, dataset_name, metric)
|
331 |
-
|
332 |
-
model_checkpoint = model_checkpoint
|
333 |
-
raw_datasets = load_dataset(dataset_name, "mrpc")
|
334 |
-
metric = load("glue", "mrpc")
|
335 |
-
#tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
336 |
-
output = compute_model_card_evaluation_results(model_checkpoint, raw_datasets, metric)
|
337 |
-
|
338 |
-
print(json.dumps(output))
|
339 |
-
|
340 |
-
if in_container:
|
341 |
-
with open("/tmp/outputs/computation_result.json", "w") as f:
|
342 |
-
json.dump(output, f, indent=4, sort_keys=True)
|
343 |
-
else:
|
344 |
-
print(json.dumps(output, indent=4, sort_keys=True))
|
345 |
-
"""
|
|
|
24 |
|
25 |
app = FastAPI()
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def preprocess_function(examples):
|
29 |
tokenizer = AutoTokenizer.from_pretrained("sgugger/glue-mrpc")
|
|
|
78 |
return {'detail': 'Welcome to Bastions Model evaluation!'}
|
79 |
|
80 |
@app.post("/api/evaluate", summary = "Input dataset and model identifiers", tags = ["Test API"])
|
81 |
+
def return_output(model_checkpoint, dataset_name):
|
82 |
|
83 |
model_checkpoint = "sgugger/glue-mrpc"
|
84 |
dataset_name = "nyu-mll/glue"
|
|
|
91 |
#tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
92 |
output = compute_model_card_evaluation_results(model_checkpoint, raw_datasets, metric)
|
93 |
|
94 |
+
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|