Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import io
|
6 |
+
|
7 |
+
# Load model and processor once
|
8 |
+
@st.cache_resource
|
9 |
+
def load_model():
|
10 |
+
model_id = "HuggingFaceTB/SmolVLM2-2.2B-Instruct"
|
11 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
12 |
+
model = AutoModelForVision2Seq.from_pretrained(model_id).to("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
return processor, model
|
14 |
+
|
15 |
+
processor, model = load_model()
|
16 |
+
|
17 |
+
# Streamlit UI
|
18 |
+
st.title("Aadhaar Card Information Extractor")
|
19 |
+
uploaded_file = st.file_uploader("Upload Aadhaar card image", type=["jpg", "png", "jpeg"])
|
20 |
+
|
21 |
+
if uploaded_file is not None:
|
22 |
+
image = Image.open(uploaded_file).convert("RGB")
|
23 |
+
st.image(image, caption="Uploaded Aadhaar Card", use_column_width=True)
|
24 |
+
|
25 |
+
if st.button("Extract Info"):
|
26 |
+
with st.spinner("Extracting..."):
|
27 |
+
prompt = (
|
28 |
+
"You are an AI system for extracting information from Indian Aadhaar cards. "
|
29 |
+
"From the image, extract and return a structured JSON with:\n"
|
30 |
+
"- Name\n"
|
31 |
+
"- Father's Name\n"
|
32 |
+
"- Date of Birth\n"
|
33 |
+
"- Gender\n"
|
34 |
+
"- Aadhaar Number\n"
|
35 |
+
"- Address (Street, Locality, District, State, PIN)\n"
|
36 |
+
"- QR code data (if visible)\n"
|
37 |
+
"- Bounding box of photograph as [x1, y1, x2, y2]\n"
|
38 |
+
"Respond only with JSON."
|
39 |
+
)
|
40 |
+
|
41 |
+
inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device)
|
42 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
43 |
+
result = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
44 |
+
st.code(result, language="json")
|