kshitijthakkar commited on
Commit
555572d
·
verified ·
1 Parent(s): 81917a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +91 -165
app.py CHANGED
@@ -1,196 +1,122 @@
 
 
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
6
 
7
- # (Keep Constants as is)
 
 
 
 
 
 
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
- """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
- """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
 
 
 
 
 
 
 
 
29
 
30
- if profile:
31
- username= f"{profile.username}"
32
- print(f"User logged in: {username}")
33
- else:
34
- print("User not logged in.")
35
- return "Please Login to Hugging Face with the button.", None
36
 
37
- api_url = DEFAULT_API_URL
38
- questions_url = f"{api_url}/questions"
39
- submit_url = f"{api_url}/submit"
 
 
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
- agent = BasicAgent()
44
  except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
 
51
- # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
  try:
54
- response = requests.get(questions_url, timeout=15)
55
- response.raise_for_status()
56
- questions_data = response.json()
57
- if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
 
72
- # 3. Run your Agent
73
- results_log = []
74
- answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
- for item in questions_data:
77
- task_id = item.get("task_id")
78
- question_text = item.get("question")
79
- if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
- continue
82
  try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
-
90
- if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
-
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
-
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
  try:
102
- response = requests.post(submit_url, json=submission_data, timeout=60)
103
- response.raise_for_status()
104
- result_data = response.json()
105
- final_status = (
106
- f"Submission Successful!\n"
107
- f"User: {result_data.get('username')}\n"
108
- f"Overall Score: {result_data.get('score', 'N/A')}% "
109
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
- f"Message: {result_data.get('message', 'No message received.')}"
111
  )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
  except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
 
 
142
 
143
- # --- Build Gradio Interface using Blocks ---
144
  with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
  gr.Markdown(
147
- """
148
- **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
- """
159
  )
 
 
 
 
 
160
 
161
- gr.LoginButton()
162
-
163
- run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
-
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
173
 
174
  if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
- space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
-
180
- if space_host_startup:
181
- print(f"✅ SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
- else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
- print(f"✅ SPACE_ID found: {space_id_startup}")
188
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
- else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
1
+ # app.py
2
+
3
  import os
4
  import gradio as gr
5
  import requests
 
6
  import pandas as pd
7
 
8
+ from smolagents import (
9
+ CodeAgent,
10
+ DuckDuckGoSearchTool,
11
+ PythonREPLTool,
12
+ OpenAIServerModel,
13
+ )
14
+
15
  # --- Constants ---
16
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
17
 
18
+ # --- Agent Definition ---
19
+ class GaiaAgent:
20
+ def __init__(self, openai_key: str):
21
+ self.openai_key = openai_key
22
+ # 1) Initialize the LLM-backed model
23
+ self.model = OpenAIServerModel(
24
+ model_id="gpt-4", # or "gpt-3.5-turbo" if you prefer
25
+ api_key=self.openai_key,
26
+ )
27
+ # 2) Define the tools
28
+ self.search_tool = DuckDuckGoSearchTool()
29
+ self.python_tool = PythonREPLTool()
30
+ # 3) Create the CodeAgent
31
+ self.agent = CodeAgent(
32
+ model=self.model,
33
+ tools=[self.search_tool, self.python_tool],
34
+ # Encourage the agent to think step-by-step in code
35
+ max_steps=20,
36
+ system_prompt=(
37
+ "You are a meticulous AI agent. "
38
+ "Always think in Python code using the available tools. "
39
+ "Never answer without executing or checking with a tool. "
40
+ "Use DuckDuckGoSearchTool for lookups, PythonREPLTool for "
41
+ "calculations, string or list manipulations."
42
+ )
43
+ )
44
 
45
+ def __call__(self, question: str) -> str:
46
+ return self.agent.run(question)
 
 
 
 
47
 
48
+ def run_and_submit_all(profile: gr.OAuthProfile | None, openai_key: str):
49
+ # --- Login & Setup ---
50
+ if not profile:
51
+ return "Please log in to Hugging Face to submit your score.", None
52
+ username = profile.username.strip()
53
 
54
+ # 1) Instantiate our improved agent
55
  try:
56
+ agent = GaiaAgent(openai_key)
57
  except Exception as e:
 
58
  return f"Error initializing agent: {e}", None
 
 
 
59
 
60
+ # 2) Fetch the GAIA questions
61
+ questions_url = f"{DEFAULT_API_URL}/questions"
62
  try:
63
+ resp = requests.get(questions_url, timeout=15)
64
+ resp.raise_for_status()
65
+ questions = resp.json()
 
 
 
 
 
 
 
 
 
 
 
66
  except Exception as e:
67
+ return f"Error fetching questions: {e}", None
 
68
 
69
+ # 3) Run the agent on each question
70
+ answers = []
71
+ log = []
72
+ for item in questions:
73
+ tid = item["task_id"]
74
+ q = item["question"]
 
 
 
 
75
  try:
76
+ ans = agent(q)
 
 
77
  except Exception as e:
78
+ ans = f"ERROR: {e}"
79
+ answers.append({"task_id": tid, "submitted_answer": ans})
80
+ log.append({"Task ID": tid, "Question": q, "Answer": ans})
81
+
82
+ # 4) Submit
83
+ submit_url = f"{DEFAULT_API_URL}/submit"
84
+ payload = {
85
+ "username": username,
86
+ "agent_code": f"https://huggingface.co/spaces/kshitijthakkar/GaiaAgent/tree/main",
87
+ "answers": answers,
88
+ }
 
 
 
89
  try:
90
+ res = requests.post(submit_url, json=payload, timeout=60)
91
+ res.raise_for_status()
92
+ data = res.json()
93
+ status = (
94
+ f"Submission Successful!\n"
95
+ f"User: {data['username']}\n"
96
+ f"Score: {data['score']}% ({data['correct_count']}/{data['total_attempted']})\n"
97
+ f"Message: {data.get('message','')}"
 
98
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
  except Exception as e:
100
+ status = f"Submission failed: {e}"
 
 
 
101
 
102
+ return status, pd.DataFrame(log)
103
 
104
+ # --- Gradio UI ---
105
  with gr.Blocks() as demo:
106
+ gr.Markdown("# GAIA Benchmark Runner")
107
  gr.Markdown(
108
+ "1. Clone this Space and customize your agent logic.\n"
109
+ "2. Log in below (to get your HF username).\n"
110
+ "3. Enter your OpenAI key (if needed).\n"
111
+ "4. Click to run and submit to the leaderboard."
 
 
 
 
 
 
 
 
112
  )
113
+ login = gr.LoginButton()
114
+ key_in = gr.Textbox(label="OpenAI API Key", type="password", placeholder="sk-...")
115
+ run_btn = gr.Button("Run & Submit")
116
+ out_status = gr.Textbox(label="Status", lines=4)
117
+ out_table = gr.DataFrame(label="Questions & Answers")
118
 
119
+ run_btn.click(fn=run_and_submit_all, inputs=[login, key_in], outputs=[out_status, out_table])
 
 
 
 
 
 
 
 
 
 
 
120
 
121
  if __name__ == "__main__":
122
+ demo.launch(debug=True, share=False)