Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,196 +1,122 @@
|
|
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
-
# ---
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
print(f"User logged in: {username}")
|
33 |
-
else:
|
34 |
-
print("User not logged in.")
|
35 |
-
return "Please Login to Hugging Face with the button.", None
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
40 |
|
41 |
-
# 1
|
42 |
try:
|
43 |
-
agent =
|
44 |
except Exception as e:
|
45 |
-
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
47 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
48 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
-
print(agent_code)
|
50 |
|
51 |
-
# 2
|
52 |
-
|
53 |
try:
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
if not questions_data:
|
58 |
-
print("Fetched questions list is empty.")
|
59 |
-
return "Fetched questions list is empty or invalid format.", None
|
60 |
-
print(f"Fetched {len(questions_data)} questions.")
|
61 |
-
except requests.exceptions.RequestException as e:
|
62 |
-
print(f"Error fetching questions: {e}")
|
63 |
-
return f"Error fetching questions: {e}", None
|
64 |
-
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
66 |
-
print(f"Response text: {response.text[:500]}")
|
67 |
-
return f"Error decoding server response for questions: {e}", None
|
68 |
except Exception as e:
|
69 |
-
|
70 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
|
72 |
-
# 3
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
question_text = item.get("question")
|
79 |
-
if not task_id or question_text is None:
|
80 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
-
continue
|
82 |
try:
|
83 |
-
|
84 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
except Exception as e:
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
# 5. Submit
|
100 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
101 |
try:
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
f"Submission Successful!\n"
|
107 |
-
f"User: {
|
108 |
-
f"
|
109 |
-
f"
|
110 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
111 |
)
|
112 |
-
print("Submission successful.")
|
113 |
-
results_df = pd.DataFrame(results_log)
|
114 |
-
return final_status, results_df
|
115 |
-
except requests.exceptions.HTTPError as e:
|
116 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
117 |
-
try:
|
118 |
-
error_json = e.response.json()
|
119 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
120 |
-
except requests.exceptions.JSONDecodeError:
|
121 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
122 |
-
status_message = f"Submission Failed: {error_detail}"
|
123 |
-
print(status_message)
|
124 |
-
results_df = pd.DataFrame(results_log)
|
125 |
-
return status_message, results_df
|
126 |
-
except requests.exceptions.Timeout:
|
127 |
-
status_message = "Submission Failed: The request timed out."
|
128 |
-
print(status_message)
|
129 |
-
results_df = pd.DataFrame(results_log)
|
130 |
-
return status_message, results_df
|
131 |
-
except requests.exceptions.RequestException as e:
|
132 |
-
status_message = f"Submission Failed: Network error - {e}"
|
133 |
-
print(status_message)
|
134 |
-
results_df = pd.DataFrame(results_log)
|
135 |
-
return status_message, results_df
|
136 |
except Exception as e:
|
137 |
-
|
138 |
-
print(status_message)
|
139 |
-
results_df = pd.DataFrame(results_log)
|
140 |
-
return status_message, results_df
|
141 |
|
|
|
142 |
|
143 |
-
# ---
|
144 |
with gr.Blocks() as demo:
|
145 |
-
gr.Markdown("#
|
146 |
gr.Markdown(
|
147 |
-
""
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
152 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
153 |
-
|
154 |
-
---
|
155 |
-
**Disclaimers:**
|
156 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
158 |
-
"""
|
159 |
)
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
-
|
165 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
-
# Removed max_rows=10 from DataFrame constructor
|
167 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
-
|
169 |
-
run_button.click(
|
170 |
-
fn=run_and_submit_all,
|
171 |
-
outputs=[status_output, results_table]
|
172 |
-
)
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
-
|
176 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
179 |
-
|
180 |
-
if space_host_startup:
|
181 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
182 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
183 |
-
else:
|
184 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
185 |
-
|
186 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
187 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
188 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
189 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
190 |
-
else:
|
191 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
192 |
-
|
193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
-
|
195 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
196 |
-
demo.launch(debug=True, share=False)
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
import os
|
4 |
import gradio as gr
|
5 |
import requests
|
|
|
6 |
import pandas as pd
|
7 |
|
8 |
+
from smolagents import (
|
9 |
+
CodeAgent,
|
10 |
+
DuckDuckGoSearchTool,
|
11 |
+
PythonREPLTool,
|
12 |
+
OpenAIServerModel,
|
13 |
+
)
|
14 |
+
|
15 |
# --- Constants ---
|
16 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
17 |
|
18 |
+
# --- Agent Definition ---
|
19 |
+
class GaiaAgent:
|
20 |
+
def __init__(self, openai_key: str):
|
21 |
+
self.openai_key = openai_key
|
22 |
+
# 1) Initialize the LLM-backed model
|
23 |
+
self.model = OpenAIServerModel(
|
24 |
+
model_id="gpt-4", # or "gpt-3.5-turbo" if you prefer
|
25 |
+
api_key=self.openai_key,
|
26 |
+
)
|
27 |
+
# 2) Define the tools
|
28 |
+
self.search_tool = DuckDuckGoSearchTool()
|
29 |
+
self.python_tool = PythonREPLTool()
|
30 |
+
# 3) Create the CodeAgent
|
31 |
+
self.agent = CodeAgent(
|
32 |
+
model=self.model,
|
33 |
+
tools=[self.search_tool, self.python_tool],
|
34 |
+
# Encourage the agent to think step-by-step in code
|
35 |
+
max_steps=20,
|
36 |
+
system_prompt=(
|
37 |
+
"You are a meticulous AI agent. "
|
38 |
+
"Always think in Python code using the available tools. "
|
39 |
+
"Never answer without executing or checking with a tool. "
|
40 |
+
"Use DuckDuckGoSearchTool for lookups, PythonREPLTool for "
|
41 |
+
"calculations, string or list manipulations."
|
42 |
+
)
|
43 |
+
)
|
44 |
|
45 |
+
def __call__(self, question: str) -> str:
|
46 |
+
return self.agent.run(question)
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None, openai_key: str):
|
49 |
+
# --- Login & Setup ---
|
50 |
+
if not profile:
|
51 |
+
return "Please log in to Hugging Face to submit your score.", None
|
52 |
+
username = profile.username.strip()
|
53 |
|
54 |
+
# 1) Instantiate our improved agent
|
55 |
try:
|
56 |
+
agent = GaiaAgent(openai_key)
|
57 |
except Exception as e:
|
|
|
58 |
return f"Error initializing agent: {e}", None
|
|
|
|
|
|
|
59 |
|
60 |
+
# 2) Fetch the GAIA questions
|
61 |
+
questions_url = f"{DEFAULT_API_URL}/questions"
|
62 |
try:
|
63 |
+
resp = requests.get(questions_url, timeout=15)
|
64 |
+
resp.raise_for_status()
|
65 |
+
questions = resp.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
except Exception as e:
|
67 |
+
return f"Error fetching questions: {e}", None
|
|
|
68 |
|
69 |
+
# 3) Run the agent on each question
|
70 |
+
answers = []
|
71 |
+
log = []
|
72 |
+
for item in questions:
|
73 |
+
tid = item["task_id"]
|
74 |
+
q = item["question"]
|
|
|
|
|
|
|
|
|
75 |
try:
|
76 |
+
ans = agent(q)
|
|
|
|
|
77 |
except Exception as e:
|
78 |
+
ans = f"ERROR: {e}"
|
79 |
+
answers.append({"task_id": tid, "submitted_answer": ans})
|
80 |
+
log.append({"Task ID": tid, "Question": q, "Answer": ans})
|
81 |
+
|
82 |
+
# 4) Submit
|
83 |
+
submit_url = f"{DEFAULT_API_URL}/submit"
|
84 |
+
payload = {
|
85 |
+
"username": username,
|
86 |
+
"agent_code": f"https://huggingface.co/spaces/kshitijthakkar/GaiaAgent/tree/main",
|
87 |
+
"answers": answers,
|
88 |
+
}
|
|
|
|
|
|
|
89 |
try:
|
90 |
+
res = requests.post(submit_url, json=payload, timeout=60)
|
91 |
+
res.raise_for_status()
|
92 |
+
data = res.json()
|
93 |
+
status = (
|
94 |
+
f"✅ Submission Successful!\n"
|
95 |
+
f"User: {data['username']}\n"
|
96 |
+
f"Score: {data['score']}% ({data['correct_count']}/{data['total_attempted']})\n"
|
97 |
+
f"Message: {data.get('message','')}"
|
|
|
98 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
except Exception as e:
|
100 |
+
status = f"Submission failed: {e}"
|
|
|
|
|
|
|
101 |
|
102 |
+
return status, pd.DataFrame(log)
|
103 |
|
104 |
+
# --- Gradio UI ---
|
105 |
with gr.Blocks() as demo:
|
106 |
+
gr.Markdown("# GAIA Benchmark Runner")
|
107 |
gr.Markdown(
|
108 |
+
"1. Clone this Space and customize your agent logic.\n"
|
109 |
+
"2. Log in below (to get your HF username).\n"
|
110 |
+
"3. Enter your OpenAI key (if needed).\n"
|
111 |
+
"4. Click to run and submit to the leaderboard."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
)
|
113 |
+
login = gr.LoginButton()
|
114 |
+
key_in = gr.Textbox(label="OpenAI API Key", type="password", placeholder="sk-...")
|
115 |
+
run_btn = gr.Button("Run & Submit")
|
116 |
+
out_status = gr.Textbox(label="Status", lines=4)
|
117 |
+
out_table = gr.DataFrame(label="Questions & Answers")
|
118 |
|
119 |
+
run_btn.click(fn=run_and_submit_all, inputs=[login, key_in], outputs=[out_status, out_table])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
if __name__ == "__main__":
|
122 |
+
demo.launch(debug=True, share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|