|
import gradio as gr |
|
import os |
|
from typing import List, Dict |
|
import numpy as np |
|
from datasets import load_dataset |
|
from langchain.text_splitter import ( |
|
RecursiveCharacterTextSplitter, |
|
CharacterTextSplitter, |
|
TokenTextSplitter |
|
) |
|
from langchain_community.vectorstores import FAISS, Chroma, Qdrant |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_community.llms import HuggingFaceEndpoint |
|
from langchain.memory import ConversationBufferMemory |
|
from sentence_transformers import SentenceTransformer, util |
|
import torch |
|
|
|
|
|
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"] |
|
list_llm_simple = [os.path.basename(llm) for llm in list_llm] |
|
api_token = os.getenv("HF_TOKEN") |
|
|
|
|
|
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') |
|
|
|
|
|
def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int = 64): |
|
splitters = { |
|
"recursive": RecursiveCharacterTextSplitter( |
|
chunk_size=chunk_size, |
|
chunk_overlap=chunk_overlap |
|
), |
|
"fixed": CharacterTextSplitter( |
|
chunk_size=chunk_size, |
|
chunk_overlap=chunk_overlap |
|
), |
|
"token": TokenTextSplitter( |
|
chunk_size=chunk_size, |
|
chunk_overlap=chunk_overlap |
|
) |
|
} |
|
return splitters.get(strategy) |
|
|
|
|
|
def calculate_semantic_similarity(text1: str, text2: str) -> float: |
|
embeddings1 = sentence_model.encode([text1], convert_to_tensor=True) |
|
embeddings2 = sentence_model.encode([text2], convert_to_tensor=True) |
|
similarity = util.pytorch_cos_sim(embeddings1, embeddings2) |
|
return float(similarity[0][0]) |
|
|
|
def evaluate_response(question: str, answer: str, ground_truth: str, contexts: List[str]) -> Dict[str, float]: |
|
|
|
answer_similarity = calculate_semantic_similarity(answer, ground_truth) |
|
|
|
|
|
context_scores = [calculate_semantic_similarity(question, ctx) for ctx in contexts] |
|
context_relevance = np.mean(context_scores) |
|
|
|
|
|
answer_relevance = calculate_semantic_similarity(question, answer) |
|
|
|
return { |
|
"answer_similarity": answer_similarity, |
|
"context_relevance": context_relevance, |
|
"answer_relevance": answer_relevance, |
|
"average_score": np.mean([answer_similarity, context_relevance, answer_relevance]) |
|
} |
|
|
|
|
|
def load_doc(list_file_path: List[str], splitting_strategy: str = "recursive"): |
|
loaders = [PyPDFLoader(x) for x in list_file_path] |
|
pages = [] |
|
for loader in loaders: |
|
pages.extend(loader.load()) |
|
|
|
text_splitter = get_text_splitter(splitting_strategy) |
|
doc_splits = text_splitter.split_documents(pages) |
|
return doc_splits |
|
|
|
|
|
def create_faiss_db(splits, embeddings): |
|
return FAISS.from_documents(splits, embeddings) |
|
|
|
def create_chroma_db(splits, embeddings): |
|
return Chroma.from_documents(splits, embeddings) |
|
|
|
def create_qdrant_db(splits, embeddings): |
|
return Qdrant.from_documents( |
|
splits, |
|
embeddings, |
|
location=":memory:", |
|
collection_name="pdf_docs" |
|
) |
|
|
|
def create_db(splits, db_choice: str = "faiss"): |
|
embeddings = HuggingFaceEmbeddings() |
|
db_creators = { |
|
"faiss": create_faiss_db, |
|
"chroma": create_chroma_db, |
|
"qdrant": create_qdrant_db |
|
} |
|
return db_creators[db_choice](splits, embeddings) |
|
|
|
def load_evaluation_dataset(): |
|
dataset = load_dataset("explodinggradients/fiqa", split="test") |
|
return dataset |
|
|
|
def evaluate_rag_pipeline(qa_chain, dataset): |
|
|
|
eval_samples = dataset.select(range(5)) |
|
|
|
results = [] |
|
for sample in eval_samples: |
|
question = sample["question"] |
|
|
|
|
|
response = qa_chain.invoke({ |
|
"question": question, |
|
"chat_history": [] |
|
}) |
|
|
|
|
|
eval_result = evaluate_response( |
|
question=question, |
|
answer=response["answer"], |
|
ground_truth=sample["answer"], |
|
contexts=[doc.page_content for doc in response["source_documents"]] |
|
) |
|
|
|
results.append(eval_result) |
|
|
|
|
|
avg_results = { |
|
metric: float(np.mean([r[metric] for r in results])) |
|
for metric in results[0].keys() |
|
} |
|
|
|
return avg_results |
|
|
|
|
|
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): |
|
if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct": |
|
llm = HuggingFaceEndpoint( |
|
repo_id=llm_model, |
|
huggingfacehub_api_token=api_token, |
|
temperature=temperature, |
|
max_new_tokens=max_tokens, |
|
top_k=top_k, |
|
) |
|
else: |
|
llm = HuggingFaceEndpoint( |
|
huggingfacehub_api_token=api_token, |
|
repo_id=llm_model, |
|
temperature=temperature, |
|
max_new_tokens=max_tokens, |
|
top_k=top_k, |
|
) |
|
|
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
output_key='answer', |
|
return_messages=True |
|
) |
|
|
|
retriever = vector_db.as_retriever() |
|
qa_chain = ConversationalRetrievalChain.from_llm( |
|
llm, |
|
retriever=retriever, |
|
chain_type="stuff", |
|
memory=memory, |
|
return_source_documents=True, |
|
verbose=False, |
|
) |
|
return qa_chain |
|
|
|
def initialize_database(list_file_obj, splitting_strategy, db_choice, progress=gr.Progress()): |
|
list_file_path = [x.name for x in list_file_obj if x is not None] |
|
doc_splits = load_doc(list_file_path, splitting_strategy) |
|
vector_db = create_db(doc_splits, db_choice) |
|
return vector_db, f"Database created using {splitting_strategy} splitting and {db_choice} vector database!" |
|
|
|
def format_chat_history(message, chat_history): |
|
formatted_chat_history = [] |
|
for user_message, bot_message in chat_history: |
|
formatted_chat_history.append(f"User: {user_message}") |
|
formatted_chat_history.append(f"Assistant: {bot_message}") |
|
return formatted_chat_history |
|
|
|
def conversation(qa_chain, message, history): |
|
formatted_chat_history = format_chat_history(message, history) |
|
response = qa_chain.invoke({ |
|
"question": message, |
|
"chat_history": formatted_chat_history |
|
}) |
|
|
|
response_answer = response["answer"] |
|
if response_answer.find("Helpful Answer:") != -1: |
|
response_answer = response_answer.split("Helpful Answer:")[-1] |
|
|
|
response_sources = response["source_documents"] |
|
response_source1 = response_sources[0].page_content.strip() |
|
response_source2 = response_sources[1].page_content.strip() |
|
response_source3 = response_sources[2].page_content.strip() |
|
|
|
response_source1_page = response_sources[0].metadata["page"] + 1 |
|
response_source2_page = response_sources[1].metadata["page"] + 1 |
|
response_source3_page = response_sources[2].metadata["page"] + 1 |
|
|
|
new_history = history + [(message, response_answer)] |
|
|
|
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page |
|
|
|
def demo(): |
|
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo: |
|
vector_db = gr.State() |
|
qa_chain = gr.State() |
|
|
|
gr.HTML("<center><h1>Enhanced RAG PDF Chatbot</h1></center>") |
|
gr.Markdown("""<b>Query your PDF documents with advanced RAG capabilities!</b>""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=86): |
|
gr.Markdown("<b>Step 1 - Configure and Initialize RAG Pipeline</b>") |
|
with gr.Row(): |
|
document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents") |
|
|
|
with gr.Row(): |
|
splitting_strategy = gr.Radio( |
|
["recursive", "fixed", "token"], |
|
label="Text Splitting Strategy", |
|
value="recursive" |
|
) |
|
db_choice = gr.Radio( |
|
["faiss", "chroma", "qdrant"], |
|
label="Vector Database", |
|
value="faiss" |
|
) |
|
|
|
with gr.Row(): |
|
db_btn = gr.Button("Create vector database") |
|
evaluate_btn = gr.Button("Evaluate RAG Pipeline") |
|
|
|
with gr.Row(): |
|
db_progress = gr.Textbox(value="Not initialized", show_label=False) |
|
evaluation_results = gr.JSON(label="Evaluation Results") |
|
|
|
gr.Markdown("<b>Select Large Language Model (LLM) and input parameters</b>") |
|
with gr.Row(): |
|
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index") |
|
|
|
with gr.Row(): |
|
with gr.Accordion("LLM input parameters", open=False): |
|
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature") |
|
slider_maxtokens = gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max New Tokens") |
|
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k") |
|
|
|
with gr.Row(): |
|
qachain_btn = gr.Button("Initialize Question Answering Chatbot") |
|
llm_progress = gr.Textbox(value="Not initialized", show_label=False) |
|
|
|
with gr.Column(scale=200): |
|
gr.Markdown("<b>Step 2 - Chat with your Document</b>") |
|
chatbot = gr.Chatbot(height=505) |
|
|
|
with gr.Accordion("Relevant context from the source document", open=False): |
|
with gr.Row(): |
|
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20) |
|
source1_page = gr.Number(label="Page", scale=1) |
|
with gr.Row(): |
|
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20) |
|
source2_page = gr.Number(label="Page", scale=1) |
|
with gr.Row(): |
|
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20) |
|
source3_page = gr.Number(label="Page", scale=1) |
|
|
|
with gr.Row(): |
|
msg = gr.Textbox(placeholder="Ask a question", container=True) |
|
with gr.Row(): |
|
submit_btn = gr.Button("Submit") |
|
clear_btn = gr.ClearButton([msg, chatbot], value="Clear") |
|
|
|
|
|
db_btn.click( |
|
initialize_database, |
|
inputs=[document, splitting_strategy, db_choice], |
|
outputs=[vector_db, db_progress] |
|
) |
|
|
|
evaluate_btn.click( |
|
lambda qa_chain: evaluate_rag_pipeline(qa_chain, load_evaluation_dataset()) if qa_chain else None, |
|
inputs=[qa_chain], |
|
outputs=[evaluation_results] |
|
) |
|
|
|
qachain_btn.click( |
|
initialize_llmchain, |
|
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], |
|
outputs=[qa_chain, llm_progress] |
|
).then( |
|
lambda: [None, "", 0, "", 0, "", 0], |
|
inputs=None, |
|
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], |
|
queue=False |
|
) |
|
|
|
msg.submit(conversation, |
|
inputs=[qa_chain, msg, chatbot], |
|
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], |
|
queue=False |
|
) |
|
|
|
submit_btn.click(conversation, |
|
inputs=[qa_chain, msg, chatbot], |
|
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], |
|
queue=False |
|
) |
|
|
|
clear_btn.click( |
|
lambda: [None, "", 0, "", 0, "", 0], |
|
inputs=None, |
|
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], |
|
queue=False |
|
) |
|
|
|
demo.queue().launch(debug=True) |
|
|
|
if __name__ == "__main__": |
|
demo() |