|
import os |
|
import sys |
|
|
|
if "APP_PATH" in os.environ: |
|
app_path = os.path.abspath(os.environ["APP_PATH"]) |
|
if os.getcwd() != app_path: |
|
|
|
os.chdir(app_path) |
|
if app_path not in sys.path: |
|
sys.path.append(app_path) |
|
|
|
import gradio as gr |
|
|
|
from typing import List |
|
|
|
import pypdfium2 |
|
from pypdfium2 import PdfiumError |
|
|
|
from surya.detection import batch_text_detection |
|
from surya.input.pdflines import get_page_text_lines, get_table_blocks |
|
from surya.layout import batch_layout_detection |
|
from surya.model.detection.model import load_model, load_processor |
|
from surya.model.layout.model import load_model as load_layout_model |
|
from surya.model.layout.processor import load_processor as load_layout_processor |
|
from surya.model.recognition.model import load_model as load_rec_model |
|
from surya.model.recognition.processor import load_processor as load_rec_processor |
|
from surya.model.table_rec.model import load_model as load_table_model |
|
from surya.model.table_rec.processor import load_processor as load_table_processor |
|
from surya.model.ocr_error.model import load_model as load_ocr_error_model, load_tokenizer as load_ocr_error_processor |
|
from surya.postprocessing.heatmap import draw_polys_on_image, draw_bboxes_on_image |
|
from surya.ocr import run_ocr |
|
from surya.postprocessing.text import draw_text_on_image |
|
from PIL import Image |
|
from surya.languages import CODE_TO_LANGUAGE |
|
from surya.input.langs import replace_lang_with_code |
|
from surya.schema import OCRResult, TextDetectionResult, LayoutResult, TableResult |
|
from surya.settings import settings |
|
from surya.tables import batch_table_recognition |
|
from surya.postprocessing.util import rescale_bbox |
|
from pdftext.extraction import plain_text_output |
|
from surya.ocr_error import batch_ocr_error_detection |
|
|
|
|
|
def load_det_cached(): |
|
return load_model(), load_processor() |
|
|
|
def load_rec_cached(): |
|
return load_rec_model(), load_rec_processor() |
|
|
|
def load_layout_cached(): |
|
return load_layout_model(), load_layout_processor() |
|
|
|
def load_table_cached(): |
|
return load_table_model(), load_table_processor() |
|
|
|
def load_ocr_error_cached(): |
|
return load_ocr_error_model(), load_ocr_error_processor() |
|
|
|
|
|
def run_ocr_errors(pdf_file, page_count, sample_len=512, max_samples=10, max_pages=15): |
|
|
|
page_middle = page_count // 2 |
|
page_range = range(max(page_middle - max_pages, 0), min(page_middle + max_pages, page_count)) |
|
text = plain_text_output(pdf_file, page_range=page_range) |
|
|
|
sample_gap = len(text) // max_samples |
|
if len(text) == 0 or sample_gap == 0: |
|
return "This PDF has no text or very little text", ["no text"] |
|
|
|
if sample_gap < sample_len: |
|
sample_gap = sample_len |
|
|
|
|
|
samples = [] |
|
for i in range(0, len(text), sample_gap): |
|
samples.append(text[i:i + sample_len]) |
|
|
|
results = batch_ocr_error_detection(samples, ocr_error_model, ocr_error_processor) |
|
label = "This PDF has good text." |
|
if results.labels.count("bad") / len(results.labels) > .2: |
|
label = "This PDF may have garbled or bad OCR text." |
|
return label, results.labels |
|
|
|
|
|
def text_detection(img) -> (Image.Image, TextDetectionResult): |
|
pred = batch_text_detection([img], det_model, det_processor)[0] |
|
polygons = [p.polygon for p in pred.bboxes] |
|
det_img = draw_polys_on_image(polygons, img.copy()) |
|
return det_img, pred |
|
|
|
|
|
def layout_detection(img) -> (Image.Image, LayoutResult): |
|
pred = batch_layout_detection([img], layout_model, layout_processor)[0] |
|
polygons = [p.polygon for p in pred.bboxes] |
|
labels = [f"{p.label}-{p.position}" for p in pred.bboxes] |
|
layout_img = draw_polys_on_image(polygons, img.copy(), labels=labels, label_font_size=18) |
|
return layout_img, pred |
|
|
|
|
|
def table_recognition(img, highres_img, filepath, page_idx: int, use_pdf_boxes: bool, skip_table_detection: bool) -> (Image.Image, List[TableResult]): |
|
if skip_table_detection: |
|
layout_tables = [(0, 0, highres_img.size[0], highres_img.size[1])] |
|
table_imgs = [highres_img] |
|
else: |
|
_, layout_pred = layout_detection(img) |
|
layout_tables_lowres = [l.bbox for l in layout_pred.bboxes if l.label == "Table"] |
|
table_imgs = [] |
|
layout_tables = [] |
|
for tb in layout_tables_lowres: |
|
highres_bbox = rescale_bbox(tb, img.size, highres_img.size) |
|
table_imgs.append( |
|
highres_img.crop(highres_bbox) |
|
) |
|
layout_tables.append(highres_bbox) |
|
|
|
try: |
|
page_text = get_page_text_lines(filepath, [page_idx], [highres_img.size])[0] |
|
table_bboxes = get_table_blocks(layout_tables, page_text, highres_img.size) |
|
except PdfiumError: |
|
|
|
table_bboxes = [[] for _ in layout_tables] |
|
|
|
if not use_pdf_boxes or any(len(tb) == 0 for tb in table_bboxes): |
|
det_results = batch_text_detection(table_imgs, det_model, det_processor) |
|
table_bboxes = [[{"bbox": tb.bbox, "text": None} for tb in det_result.bboxes] for det_result in det_results] |
|
|
|
table_preds = batch_table_recognition(table_imgs, table_bboxes, table_model, table_processor) |
|
table_img = img.copy() |
|
|
|
for results, table_bbox in zip(table_preds, layout_tables): |
|
adjusted_bboxes = [] |
|
labels = [] |
|
colors = [] |
|
|
|
for item in results.rows + results.cols: |
|
adjusted_bboxes.append([ |
|
(item.bbox[0] + table_bbox[0]), |
|
(item.bbox[1] + table_bbox[1]), |
|
(item.bbox[2] + table_bbox[0]), |
|
(item.bbox[3] + table_bbox[1]) |
|
]) |
|
labels.append(item.label) |
|
if hasattr(item, "row_id"): |
|
colors.append("blue") |
|
else: |
|
colors.append("red") |
|
table_img = draw_bboxes_on_image(adjusted_bboxes, highres_img, labels=labels, label_font_size=18, color=colors) |
|
return table_img, table_preds |
|
|
|
|
|
def ocr(img, highres_img, langs: List[str]) -> (Image.Image, OCRResult): |
|
replace_lang_with_code(langs) |
|
img_pred = run_ocr([img], [langs], det_model, det_processor, rec_model, rec_processor, highres_images=[highres_img])[0] |
|
|
|
bboxes = [l.bbox for l in img_pred.text_lines] |
|
text = [l.text for l in img_pred.text_lines] |
|
rec_img = draw_text_on_image(bboxes, text, img.size, langs, has_math="_math" in langs) |
|
return rec_img, img_pred |
|
|
|
def open_pdf(pdf_file): |
|
return pypdfium2.PdfDocument(pdf_file) |
|
|
|
def count_pdf(pdf_file): |
|
doc = open_pdf(pdf_file) |
|
return len(doc) |
|
|
|
def get_page_image(pdf_file, page_num, dpi=96): |
|
doc = open_pdf(pdf_file) |
|
renderer = doc.render( |
|
pypdfium2.PdfBitmap.to_pil, |
|
page_indices=[page_num - 1], |
|
scale=dpi / 72, |
|
) |
|
png = list(renderer)[0] |
|
png_image = png.convert("RGB") |
|
return png_image |
|
|
|
def get_uploaded_image(in_file): |
|
return Image.open(in_file).convert("RGB") |
|
|
|
|
|
if 'det_model' not in globals(): |
|
det_model, det_processor = load_det_cached() |
|
rec_model, rec_processor = load_rec_cached() |
|
layout_model, layout_processor = load_layout_cached() |
|
table_model, table_processor = load_table_cached() |
|
ocr_error_model, ocr_error_processor = load_ocr_error_cached() |
|
|
|
with gr.Blocks(title="Surya") as demo: |
|
gr.Markdown(""" |
|
# Surya OCR Demo |
|
|
|
This app will let you try surya, a multilingual OCR model. It supports text detection + layout analysis in any language, and text recognition in 90+ languages. |
|
|
|
Notes: |
|
- This works best on documents with printed text. |
|
- Preprocessing the image (e.g. increasing contrast) can improve results. |
|
- If OCR doesn't work, try changing the resolution of your image (increase if below 2048px width, otherwise decrease). |
|
- This supports 90+ languages, see [here](https://github.com/VikParuchuri/surya/tree/master/surya/languages.py) for a full list. |
|
|
|
Find the project [here](https://github.com/VikParuchuri/surya). |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
in_file = gr.File(label="PDF file or image:", file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".webp"]) |
|
in_num = gr.Slider(label="Page number", minimum=1, maximum=100, value=1, step=1) |
|
in_img = gr.Image(label="Select page of Image", type="pil", sources=None) |
|
|
|
text_det_btn = gr.Button("Run Text Detection") |
|
layout_det_btn = gr.Button("Run Layout Analysis") |
|
|
|
lang_dd = gr.Dropdown(label="Languages", choices=sorted(list(CODE_TO_LANGUAGE.values())), multiselect=True, max_choices=4, info="Select the languages in the image (if known) to improve OCR accuracy. Optional.") |
|
text_rec_btn = gr.Button("Run OCR") |
|
|
|
use_pdf_boxes_ckb = gr.Checkbox(label="Use PDF table boxes", value=True, info="Table recognition only: Use the bounding boxes from the PDF file vs text detection model.") |
|
skip_table_detection_ckb = gr.Checkbox(label="Skip table detection", value=False, info="Table recognition only: Skip table detection and treat the whole image/page as a table.") |
|
table_rec_btn = gr.Button("Run Table Rec") |
|
|
|
ocr_errors_btn = gr.Button("Run bad PDF text detection") |
|
with gr.Column(): |
|
result_img = gr.Image(label="Result image") |
|
result_json = gr.JSON(label="Result json") |
|
|
|
def show_image(file, num=1): |
|
if file.endswith('.pdf'): |
|
count = count_pdf(file) |
|
img = get_page_image(file, num) |
|
return [ |
|
gr.update(visible=True, maximum=count), |
|
gr.update(value=img)] |
|
else: |
|
img = get_uploaded_image(file) |
|
return [ |
|
gr.update(visible=False), |
|
gr.update(value=img)] |
|
|
|
in_file.upload( |
|
fn=show_image, |
|
inputs=[in_file], |
|
outputs=[in_num, in_img], |
|
) |
|
in_num.change( |
|
fn=show_image, |
|
inputs=[in_file, in_num], |
|
outputs=[in_num, in_img], |
|
) |
|
|
|
|
|
def text_det_img(pil_image): |
|
det_img, pred = text_detection(pil_image) |
|
return det_img, pred.model_dump(exclude=["heatmap", "affinity_map"]) |
|
text_det_btn.click( |
|
fn=text_det_img, |
|
inputs=[in_img], |
|
outputs=[result_img, result_json] |
|
) |
|
|
|
def layout_det_img(pil_image): |
|
layout_img, pred = layout_detection(pil_image) |
|
return layout_img, pred.model_dump(exclude=["segmentation_map"]) |
|
layout_det_btn.click( |
|
fn=layout_det_img, |
|
inputs=[in_img], |
|
outputs=[result_img, result_json] |
|
) |
|
|
|
def text_rec_img(pil_image, in_file, page_number, languages): |
|
if in_file.endswith('.pdf'): |
|
pil_image_highres = get_page_image(in_file, page_number, dpi=settings.IMAGE_DPI_HIGHRES) |
|
else: |
|
pil_image_highres = pil_image |
|
rec_img, pred = ocr(pil_image, pil_image_highres, languages) |
|
return rec_img, pred.model_dump() |
|
text_rec_btn.click( |
|
fn=text_rec_img, |
|
inputs=[in_img, in_file, in_num, lang_dd], |
|
outputs=[result_img, result_json] |
|
) |
|
|
|
def table_rec_img(pil_image, in_file, page_number, use_pdf_boxes, skip_table_detection): |
|
if in_file.endswith('.pdf'): |
|
pil_image_highres = get_page_image(in_file, page_number, dpi=settings.IMAGE_DPI_HIGHRES) |
|
else: |
|
pil_image_highres = pil_image |
|
table_img, pred = table_recognition(pil_image, pil_image_highres, in_file, page_number - 1 if page_number else None, use_pdf_boxes, skip_table_detection) |
|
return table_img, [p.model_dump() for p in pred] |
|
table_rec_btn.click( |
|
fn=table_rec_img, |
|
inputs=[in_img, in_file, in_num, use_pdf_boxes_ckb, skip_table_detection_ckb], |
|
outputs=[result_img, result_json] |
|
) |
|
|
|
def ocr_errors_pdf(file, page_count, sample_len=512, max_samples=10, max_pages=15): |
|
if file.endswith('.pdf'): |
|
count = count_pdf(file) |
|
else: |
|
raise gr.Error("This feature only works with PDFs.", duration=5) |
|
label, results = run_ocr_errors(file, count) |
|
return gr.update(label="Result json:" + label, value=results) |
|
ocr_errors_btn.click( |
|
fn=ocr_errors_pdf, |
|
inputs=[in_file, in_num, use_pdf_boxes_ckb, skip_table_detection_ckb], |
|
outputs=[result_json] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|