|
import os |
|
import sys |
|
|
|
if "APP_PATH" in os.environ: |
|
app_path = os.path.abspath(os.environ["APP_PATH"]) |
|
if os.getcwd() != app_path: |
|
|
|
os.chdir(app_path) |
|
if app_path not in sys.path: |
|
sys.path.append(app_path) |
|
|
|
import io |
|
import tempfile |
|
from typing import List |
|
|
|
import pypdfium2 |
|
import gradio as gr |
|
import requests |
|
from contextlib import suppress |
|
|
|
from surya.common.surya.schema import TaskNames |
|
from surya.models import load_predictors |
|
|
|
from surya.debug.draw import draw_polys_on_image, draw_bboxes_on_image |
|
|
|
from surya.debug.text import draw_text_on_image |
|
from PIL import Image, ImageDraw |
|
from surya.table_rec import TableResult |
|
from surya.detection import TextDetectionResult |
|
from surya.recognition import OCRResult |
|
from surya.layout import LayoutResult |
|
from surya.settings import settings |
|
from surya.common.util import rescale_bbox, expand_bbox |
|
|
|
|
|
|
|
def ocr_errors(pdf_file, page_count, sample_len=512, max_samples=10, max_pages=15): |
|
from pdftext.extraction import plain_text_output |
|
|
|
with tempfile.NamedTemporaryFile(suffix=".pdf") as f: |
|
f.write(pdf_file.getvalue()) |
|
f.seek(0) |
|
|
|
|
|
page_middle = page_count // 2 |
|
page_range = range( |
|
max(page_middle - max_pages, 0), min(page_middle + max_pages, page_count) |
|
) |
|
text = plain_text_output(f.name, page_range=page_range) |
|
|
|
sample_gap = len(text) // max_samples |
|
if len(text) == 0 or sample_gap == 0: |
|
return "This PDF has no text or very little text", ["no text"] |
|
|
|
if sample_gap < sample_len: |
|
sample_gap = sample_len |
|
|
|
|
|
samples = [] |
|
for i in range(0, len(text), sample_gap): |
|
samples.append(text[i : i + sample_len]) |
|
|
|
results = predictors["ocr_error"](samples) |
|
label = "This PDF has good text." |
|
if results.labels.count("bad") / len(results.labels) > 0.2: |
|
label = "This PDF may have garbled or bad OCR text." |
|
return label, results.labels |
|
|
|
|
|
def text_detection(img) -> (Image.Image, TextDetectionResult): |
|
text_pred = predictors["detection"]([img])[0] |
|
text_polygons = [p.polygon for p in text_pred.bboxes] |
|
det_img = draw_polys_on_image(text_polygons, img.copy()) |
|
return det_img, text_pred |
|
|
|
|
|
def layout_detection(img) -> (Image.Image, LayoutResult): |
|
pred = predictors["layout"]([img])[0] |
|
polygons = [p.polygon for p in pred.bboxes] |
|
labels = [ |
|
f"{p.label}-{p.position}-{round(p.top_k[p.label], 2)}" for p in pred.bboxes |
|
] |
|
layout_img = draw_polys_on_image( |
|
polygons, img.copy(), labels=labels, label_font_size=18 |
|
) |
|
return layout_img, pred |
|
|
|
|
|
def table_recognition( |
|
img, highres_img, skip_table_detection: bool |
|
) -> (Image.Image, List[TableResult]): |
|
if skip_table_detection: |
|
layout_tables = [(0, 0, highres_img.size[0], highres_img.size[1])] |
|
table_imgs = [highres_img] |
|
else: |
|
_, layout_pred = layout_detection(img) |
|
layout_tables_lowres = [ |
|
line.bbox |
|
for line in layout_pred.bboxes |
|
if line.label in ["Table", "TableOfContents"] |
|
] |
|
table_imgs = [] |
|
layout_tables = [] |
|
for tb in layout_tables_lowres: |
|
highres_bbox = rescale_bbox(tb, img.size, highres_img.size) |
|
|
|
highres_bbox = expand_bbox(highres_bbox) |
|
table_imgs.append(highres_img.crop(highres_bbox)) |
|
layout_tables.append(highres_bbox) |
|
|
|
table_preds = predictors["table_rec"](table_imgs) |
|
table_img = img.copy() |
|
|
|
for results, table_bbox in zip(table_preds, layout_tables): |
|
adjusted_bboxes = [] |
|
labels = [] |
|
colors = [] |
|
|
|
for item in results.cells: |
|
adjusted_bboxes.append( |
|
[ |
|
(item.bbox[0] + table_bbox[0]), |
|
(item.bbox[1] + table_bbox[1]), |
|
(item.bbox[2] + table_bbox[0]), |
|
(item.bbox[3] + table_bbox[1]), |
|
] |
|
) |
|
labels.append(item.label) |
|
if "Row" in item.label: |
|
colors.append("blue") |
|
else: |
|
colors.append("red") |
|
table_img = draw_bboxes_on_image( |
|
adjusted_bboxes, |
|
highres_img, |
|
labels=labels, |
|
label_font_size=18, |
|
color=colors, |
|
) |
|
return table_img, table_preds |
|
|
|
|
|
def ocr( |
|
img: Image.Image, |
|
highres_img: Image.Image, |
|
skip_text_detection: bool = False, |
|
recognize_math: bool = True, |
|
with_bboxes: bool = True, |
|
) -> (Image.Image, OCRResult): |
|
if skip_text_detection: |
|
img = highres_img |
|
bboxes = [[[0, 0, img.width, img.height]]] |
|
else: |
|
bboxes = None |
|
|
|
if with_bboxes: |
|
tasks = [TaskNames.ocr_with_boxes] |
|
else: |
|
tasks = [TaskNames.ocr_without_boxes] |
|
|
|
img_pred = predictors["recognition"]( |
|
[img], |
|
task_names=tasks, |
|
bboxes=bboxes, |
|
det_predictor=predictors["detection"], |
|
highres_images=[highres_img], |
|
math_mode=recognize_math, |
|
return_words=True, |
|
)[0] |
|
|
|
bboxes = [line.bbox for line in img_pred.text_lines] |
|
text = [line.text for line in img_pred.text_lines] |
|
rec_img = draw_text_on_image(bboxes, text, img.size) |
|
|
|
word_boxes = [] |
|
for line in img_pred.text_lines: |
|
if line.words: |
|
word_boxes.extend([word.bbox for word in line.words]) |
|
|
|
box_img = img.copy() |
|
draw = ImageDraw.Draw(box_img) |
|
for word_box in word_boxes: |
|
draw.rectangle(word_box, outline="red", width=2) |
|
|
|
return rec_img, img_pred, box_img |
|
|
|
def open_pdf(pdf_file): |
|
return pypdfium2.PdfDocument(pdf_file) |
|
|
|
def page_counter(pdf_file): |
|
doc = open_pdf(pdf_file) |
|
doc_len = len(doc) |
|
doc.close() |
|
return doc_len |
|
|
|
def get_page_image(pdf_file, page_num, dpi=settings.IMAGE_DPI): |
|
doc = open_pdf(pdf_file) |
|
renderer = doc.render( |
|
pypdfium2.PdfBitmap.to_pil, |
|
page_indices=[page_num - 1], |
|
scale=dpi / 72, |
|
) |
|
png = list(renderer)[0] |
|
png_image = png.convert("RGB") |
|
doc.close() |
|
return png_image |
|
|
|
def get_uploaded_image(in_file): |
|
return Image.open(in_file).convert("RGB") |
|
|
|
|
|
predictors = load_predictors() |
|
|
|
with gr.Blocks(title="Surya") as demo: |
|
gr.Markdown(""" |
|
# Surya OCR Demo |
|
|
|
This app will let you try surya, a multilingual OCR model. It supports text detection + layout analysis in any language, and text recognition in 90+ languages. |
|
|
|
Notes: |
|
- This works best on documents with printed text. |
|
- Preprocessing the image (e.g. increasing contrast) can improve results. |
|
- If OCR doesn't work, try changing the resolution of your image (increase if below 2048px width, otherwise decrease). |
|
- This supports 90+ languages, see [here](https://github.com/VikParuchuri/surya/tree/master/surya/languages.py) for a full list. |
|
|
|
Find the original project [here](https://github.com/VikParuchuri/surya). |
|
Or this project [here](https://github.com/xiaoyao9184/docker-surya). |
|
See the [README](./blob/main/README.md) for Spaces's metadata. |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
in_file = gr.File(label="PDF file or image:", file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".webp"]) |
|
in_num = gr.Slider(label="Page number", minimum=1, maximum=100, value=1, step=1) |
|
in_img = gr.Image(label="Select page of Image", type="pil", sources=None) |
|
|
|
ocr_errors_btn = gr.Button("Run bad PDF text detection") |
|
text_det_btn = gr.Button("Run Text Detection") |
|
layout_det_btn = gr.Button("Run Layout Analysis") |
|
|
|
skip_text_detection_ckb = gr.Checkbox(label="Skip text detection", value=False, info="OCR only: Skip text detection and treat the whole image as a single line.") |
|
recognize_math_ckb = gr.Checkbox(label="Recognize math in OCR", value=True, info="Enable math mode in OCR - this will recognize math.") |
|
ocr_with_boxes_ckb = gr.Checkbox(label="OCR with boxes", value=True, info="Enable OCR with boxes - this will predict character-level boxes.") |
|
text_rec_btn = gr.Button("Run OCR") |
|
|
|
skip_table_detection_ckb = gr.Checkbox(label="Skip table detection", value=False, info="Table recognition only: Skip table detection and treat the whole image/page as a table.") |
|
table_rec_btn = gr.Button("Run Table Rec") |
|
with gr.Column(): |
|
result_img = gr.Gallery(label="Result images", show_label=True, |
|
elem_id="gallery", columns=[1], rows=[2], object_fit="contain", height="auto") |
|
|
|
gr.HTML(""" |
|
<style> |
|
#gallery { |
|
height: auto !important; |
|
max-height: none !important; |
|
overflow: visible !important; |
|
} |
|
#gallery .gallery-item { |
|
flex-direction: column !important; |
|
} |
|
#gallery .gallery-item img { |
|
width: 100% !important; |
|
height: auto !important; |
|
object-fit: contain !important; |
|
} |
|
</style> |
|
""") |
|
result_json = gr.JSON(label="Result json") |
|
|
|
def show_image(file, num=1): |
|
if file.endswith('.pdf'): |
|
count = page_counter(file) |
|
img = get_page_image(file, num, settings.IMAGE_DPI) |
|
return [ |
|
gr.update(visible=True, maximum=count), |
|
gr.update(value=img)] |
|
else: |
|
img = get_uploaded_image(file) |
|
return [ |
|
gr.update(visible=False), |
|
gr.update(value=img)] |
|
|
|
in_file.upload( |
|
fn=show_image, |
|
inputs=[in_file], |
|
outputs=[in_num, in_img], |
|
) |
|
in_num.change( |
|
fn=show_image, |
|
inputs=[in_file, in_num], |
|
outputs=[in_num, in_img], |
|
) |
|
|
|
|
|
def text_det_img(pil_image): |
|
|
|
with suppress(Exception): |
|
requests.get("https://counterapi.com/api/xiaoyao9184.github.com/view/docker-surya") |
|
|
|
det_img, pred = text_detection(pil_image) |
|
det_json = pred.model_dump(exclude=["heatmap", "affinity_map"]) |
|
return ( |
|
gr.update(label="Result image: text detected", value=[det_img], rows=[1], height=det_img.height), |
|
gr.update(label="Result json: " + str(len(det_json['bboxes'])) + " text boxes detected", value=det_json) |
|
) |
|
text_det_btn.click( |
|
fn=text_det_img, |
|
inputs=[in_img], |
|
outputs=[result_img, result_json] |
|
) |
|
|
|
|
|
def layout_det_img(pil_image): |
|
|
|
with suppress(Exception): |
|
requests.get("https://counterapi.com/api/xiaoyao9184.github.com/view/docker-surya") |
|
|
|
layout_img, pred = layout_detection(pil_image) |
|
layout_json = pred.model_dump(exclude=["segmentation_map"]) |
|
return ( |
|
gr.update(label="Result image: layout detected", value=[layout_img], rows=[1], height=layout_img.height), |
|
gr.update(label="Result json: " + str(len(layout_json['bboxes'])) + " layout labels detected", value=layout_json) |
|
) |
|
layout_det_btn.click( |
|
fn=layout_det_img, |
|
inputs=[in_img], |
|
outputs=[result_img, result_json] |
|
) |
|
|
|
|
|
def text_rec_img(pil_image, in_file, page_number, skip_text_detection, recognize_math, ocr_with_boxes): |
|
|
|
with suppress(Exception): |
|
requests.get("https://counterapi.com/api/xiaoyao9184.github.com/view/docker-surya") |
|
|
|
if in_file.endswith('.pdf'): |
|
pil_image_highres = get_page_image(in_file, page_number, dpi=settings.IMAGE_DPI_HIGHRES) |
|
else: |
|
pil_image_highres = pil_image |
|
rec_img, pred, box_img = ocr( |
|
pil_image, |
|
pil_image_highres, |
|
skip_text_detection, |
|
recognize_math, |
|
with_bboxes=ocr_with_boxes, |
|
) |
|
text_img = [(rec_img, "Text"), (box_img, "Boxes")] |
|
text_json = pred.model_dump() |
|
return ( |
|
gr.update(label="Result image: text recognized", value=text_img, rows=[2], height=rec_img.height + box_img.height), |
|
gr.update(label="Result json: " + str(len(text_json['text_lines'])) + " text lines recognized", value=text_json) |
|
) |
|
text_rec_btn.click( |
|
fn=text_rec_img, |
|
inputs=[in_img, in_file, in_num, skip_text_detection_ckb, recognize_math_ckb, ocr_with_boxes_ckb], |
|
outputs=[result_img, result_json] |
|
) |
|
|
|
|
|
def table_rec_img(pil_image, in_file, page_number, skip_table_detection): |
|
|
|
with suppress(Exception): |
|
requests.get("https://counterapi.com/api/xiaoyao9184.github.com/view/docker-surya") |
|
if in_file.endswith('.pdf'): |
|
pil_image_highres = get_page_image(in_file, page_number, dpi=settings.IMAGE_DPI_HIGHRES) |
|
else: |
|
pil_image_highres = pil_image |
|
table_img, pred = table_recognition(pil_image, pil_image_highres, skip_table_detection) |
|
table_json = [p.model_dump() for p in pred] |
|
return ( |
|
gr.update(label="Result image: table recognized", value=[table_img], rows=[1], height=table_img.height), |
|
gr.update(label="Result json: " + str(len(table_json)) + " table tree recognized", value=table_json) |
|
) |
|
table_rec_btn.click( |
|
fn=table_rec_img, |
|
inputs=[in_img, in_file, in_num, skip_table_detection_ckb], |
|
outputs=[result_img, result_json] |
|
) |
|
|
|
|
|
def ocr_errors_pdf(in_file): |
|
|
|
with suppress(Exception): |
|
requests.get("https://counterapi.com/api/xiaoyao9184.github.com/view/docker-surya") |
|
|
|
if not in_file.endswith('.pdf'): |
|
raise gr.Error("This feature only works with PDFs.", duration=5) |
|
page_count = page_counter(in_file) |
|
io_file = io.BytesIO(open(in_file.name, "rb").read()) |
|
layout_label, layout_json = ocr_errors(io_file, page_count) |
|
return ( |
|
gr.update(label="Result image: NONE", value=None), |
|
gr.update(label="Result json: " + layout_label, value=layout_json) |
|
) |
|
ocr_errors_btn.click( |
|
fn=ocr_errors_pdf, |
|
inputs=[in_file], |
|
outputs=[result_img, result_json] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|