Spaces:
Sleeping
Sleeping
File size: 3,829 Bytes
b3d4017 c97999e 91e3a88 c97999e eaf9631 09a402e 2fa94b3 ba66f78 b3d4017 09a402e b3d4017 c97999e b3d4017 c97999e 09a402e c97999e 2fa94b3 91e3a88 82d14b3 2fa94b3 82d14b3 c97999e b3d4017 b31d773 82d14b3 09a402e 82d14b3 2fa94b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
from llama_index.core.agent.workflow import AgentWorkflow
from llama_index.core.workflow import Context
from llama_index.core.tools import FunctionTool
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
from llama_index.tools.wikipedia import WikipediaToolSpec
from llama_index.core.tools.tool_spec.load_and_search import LoadAndSearchToolSpec
from llama_index.readers.web import SimpleWebPageReader
from llama_index.core.tools.ondemand_loader_tool import OnDemandLoaderTool
from langfuse.llama_index import LlamaIndexInstrumentor
from llama_index.llms.ollama import Ollama
from llama_index.core.agent.workflow import ReActAgent, FunctionAgent
class BasicAgent:
def __init__(self, ollama=False, langfuse=True):
if not ollama:
llm = HuggingFaceInferenceAPI(model_name="Qwen/Qwen2.5-Coder-32B-Instruct")
else:
llm = Ollama(model="mistral:latest", request_timeout=120.0)
# Langfuse
self.langfuse = langfuse
if self.langfuse:
self.instrumentor = LlamaIndexInstrumentor()
self.instrumentor.start()
# Initialize tools
tool_spec = DuckDuckGoSearchToolSpec()
search_tool = FunctionTool.from_defaults(tool_spec.duckduckgo_full_search)
wiki_spec = WikipediaToolSpec()
wiki_search_tool = wiki_spec.to_tool_list()[1]
# Convert into a LoadAndSearchToolSpec because the wikipedia search tool returns
# entire Wikipedia pages and this can pollute the context window of the LLM
wiki_spec = WikipediaToolSpec()
wiki_search_tool = wiki_spec.to_tool_list()[1]
# Convert into a LoadAndSearchToolSpec because the wikipedia search tool returns
# entire Wikipedia pages and this can pollute the context window of the LLM
# TODO this does not work so well. We need to make the retriever return the top 5 chunks or sth.
wiki_search_tool_las = LoadAndSearchToolSpec.from_defaults(wiki_search_tool).to_tool_list()
webpage_tool = OnDemandLoaderTool.from_defaults(
SimpleWebPageReader(html_to_text=True),
name="Webpage search tool",
description="A tool for loading the content of a webpage and querying it for information",
)
self.agent = AgentWorkflow.from_tools_or_functions( # ReActAgent(
tools=[search_tool], # webpage_tool does not work properly - cookies etc
llm=llm,
verbose=True,
system_prompt = (
"You are a general AI assistant. I will ask you a question. "
"Report your thoughts, and finish your answer with the following template: "
"FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number "
"OR as few words as possible OR a comma separated list of numbers and/or "
"strings. If you are asked for a number, don't use comma to write your "
"number neither use units such as $ or percent sign unless specified otherwise. "
"If you are asked for a string, don't use articles, neither abbreviations (e.g. "
"for cities), and write the digits in plain text unless specified otherwise. If "
"you are asked for a comma separated list, apply the above rules depending of "
"whether the element to be put in the list is a number or a string."
)
)
# self.ctx = Context(self.agent)
async def __call__(self, question: str) -> str:
response = await self.agent.run(user_msg=question) # ctx=self.ctx)
if self.langfuse:
self.instrumentor.flush()
return response.response.content.replace("FINAL ANSWER:", "").strip()
|