Final_Assignment_Agent / multimodality_tools.py
Martin Bär
Add check if audio is long
482bc3b
raw
history blame
4.96 kB
"""Tools to handle multimodal understandig."""
import os
import io
import re
import requests
import librosa
import soundfile as sf
import pandas as pd
from llama_index.core.tools import FunctionTool
from huggingface_hub import InferenceClient
from transformers import pipeline
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
def transcribe_audio(file_id: str) -> str:
"""
Transcribes an English audio file identfied by its id.
"""
try:
audio, sr = sf.read(_get_file(file_id))
if sr != 16000:
audio = librosa.resample(audio, orig_sr=sr, target_sr=16000)
except:
return "Error: Invalid file. This file is either not an audio file or the id does not exist."
asr = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
if (len(audio) / 16000) > 25:
output = asr(audio, return_timestamps=True)
else:
output = asr(audio)
return output["text"].strip()
def transcribe_audio_hf(file_id: str) -> str:
"""
Transcribes an audio file identfied by its id.
"""
#audio, sr = sf.read(_get_file(file_id))
try:
audio_bytes = _get_file(file_id).read()
except:
return "Error: Invalid file. This file is either not an audio file or the id does not exist."
client = InferenceClient(
provider="hf-inference",
api_key=os.getenv("HF_TOKEN"),
)
output = client.automatic_speech_recognition(audio_bytes, model="openai/whisper-small")
return output
def get_transcription_tool():
return FunctionTool.from_defaults(
fn=transcribe_audio,
description="Transcribes an audio file identified by its id."
)
def answer_image_question(question: str, file_id: str) -> str:
"""
Answers questions about an image identified by its id.
"""
client = InferenceClient(
provider="hf-inference",
api_key=os.getenv("HF_TOKEN"),
)
completion = client.chat.completions.create(
model= "Qwen/Qwen2.5-VL-32B-Instruct",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": question
},
{
"type": "image_url",
"image_url": {
"url": DEFAULT_API_URL + f"/files/{file_id}",
}
}
]
}
],
max_tokens=512,
)
return remove_think(completion.choices[0].message.content)
def get_image_qa_tool():
return FunctionTool.from_defaults(
fn=answer_image_question,
description="Answer a question about a given image. The image is identified by a file id."
)
def read_excel(file_id: str) -> str:
file_io = _get_file(file_id)
df = pd.read_excel(file_io)
return df.to_markdown()
def get_excel_tool():
return FunctionTool.from_defaults(
fn=read_excel,
description="Convert an excel file that is identified by its file id into a markdown string."
)
def analyse_excel(file_id: str) -> str:
file_io = _get_file(file_id)
df = pd.read_excel(file_io)
return df.describe()
def get_excel_analysis_tool():
return FunctionTool.from_defaults(
fn=read_excel,
description="Analyse an excel file that is identified by its file id and get common statistics such as mean or max per column."
)
def read_csv(file_id: str) -> str:
file_io = _get_file(file_id)
df = pd.read_csv(file_io)
return df.to_markdown()
def get_csv_tool():
return FunctionTool.from_defaults(
fn=read_excel,
description="Convert a csv file that is identified by its file id into a markdown string."
)
def analyse_csv(file_id: str) -> str:
file_io = _get_file(file_id)
df = pd.read_csv(file_io)
return df.describe()
def get_csv_analysis_tool():
return FunctionTool.from_defaults(
fn=read_excel,
description="Analyse a csv file that is identified by its file id and get common statistics such as mean or max per column."
)
def watch_video(video_url: str) -> str:
return "You are not able to watch a Video yet. Reply with 'I don't know' to the question."
def get_video_tool():
return FunctionTool.from_defaults(
fn=watch_video,
description="Watch a video and get a content description as a string."
)
def _get_file(task_id: str) -> io.BytesIO:
res = requests.get(DEFAULT_API_URL + f"/files/{task_id}")
if res.status_code != 200:
raise FileNotFoundError("Invalid file or task id.")
file_like = io.BytesIO(res.content)
return file_like
def remove_think(output: str) -> str:
"""Removes the <think> part of an LLM output."""
if output:
return re.sub("<think>.*</think>", "", output).strip()
return output