Martin Bär
commited on
Commit
·
6fec0c8
1
Parent(s):
2fa94b3
Add multimodality tools
Browse files- app.py +2 -1
- basic_agent.py +16 -22
- multimodality_tools.py +155 -0
- requirements.txt +8 -1
app.py
CHANGED
|
@@ -12,6 +12,7 @@ from basic_agent import BasicAgent
|
|
| 12 |
# --- Constants ---
|
| 13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 14 |
|
|
|
|
| 15 |
Settings.llm = None # disable LLM for Index Retrieval
|
| 16 |
Settings.chunk_size = 512 # Smaller chunk size for retrieval
|
| 17 |
|
|
@@ -78,7 +79,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 78 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 79 |
continue
|
| 80 |
try:
|
| 81 |
-
submitted_answer = agent(question_text)
|
| 82 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 83 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 84 |
except Exception as e:
|
|
|
|
| 12 |
# --- Constants ---
|
| 13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 14 |
|
| 15 |
+
# For Llamaindex's LoadAndSearchTool
|
| 16 |
Settings.llm = None # disable LLM for Index Retrieval
|
| 17 |
Settings.chunk_size = 512 # Smaller chunk size for retrieval
|
| 18 |
|
|
|
|
| 79 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 80 |
continue
|
| 81 |
try:
|
| 82 |
+
submitted_answer = agent(question_text, task_id)
|
| 83 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 84 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 85 |
except Exception as e:
|
basic_agent.py
CHANGED
|
@@ -1,18 +1,16 @@
|
|
| 1 |
-
from llama_index.core.agent.workflow import AgentWorkflow
|
| 2 |
-
from llama_index.core.workflow import Context
|
| 3 |
from llama_index.core.tools import FunctionTool
|
| 4 |
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
| 5 |
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
|
| 6 |
from llama_index.tools.wikipedia import WikipediaToolSpec
|
| 7 |
-
from llama_index.core.tools.tool_spec.load_and_search import LoadAndSearchToolSpec
|
| 8 |
-
from llama_index.readers.web import SimpleWebPageReader
|
| 9 |
-
from llama_index.core.tools.ondemand_loader_tool import OnDemandLoaderTool
|
| 10 |
from langfuse.llama_index import LlamaIndexInstrumentor
|
| 11 |
from llama_index.llms.ollama import Ollama
|
| 12 |
-
from llama_index.core.agent.workflow import
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
class BasicAgent:
|
| 15 |
-
def __init__(self, ollama=False, langfuse=
|
| 16 |
if not ollama:
|
| 17 |
llm = HuggingFaceInferenceAPI(model_name="Qwen/Qwen2.5-Coder-32B-Instruct")
|
| 18 |
else:
|
|
@@ -28,9 +26,6 @@ class BasicAgent:
|
|
| 28 |
tool_spec = DuckDuckGoSearchToolSpec()
|
| 29 |
search_tool = FunctionTool.from_defaults(tool_spec.duckduckgo_full_search)
|
| 30 |
|
| 31 |
-
wiki_spec = WikipediaToolSpec()
|
| 32 |
-
wiki_search_tool = wiki_spec.to_tool_list()[1]
|
| 33 |
-
|
| 34 |
# Convert into a LoadAndSearchToolSpec because the wikipedia search tool returns
|
| 35 |
# entire Wikipedia pages and this can pollute the context window of the LLM
|
| 36 |
wiki_spec = WikipediaToolSpec()
|
|
@@ -38,18 +33,13 @@ class BasicAgent:
|
|
| 38 |
|
| 39 |
# Convert into a LoadAndSearchToolSpec because the wikipedia search tool returns
|
| 40 |
# entire Wikipedia pages and this can pollute the context window of the LLM
|
| 41 |
-
|
| 42 |
# TODO this does not work so well. We need to make the retriever return the top 5 chunks or sth.
|
| 43 |
-
wiki_search_tool_las = LoadAndSearchToolSpec.from_defaults(wiki_search_tool).to_tool_list()
|
| 44 |
-
|
| 45 |
-
webpage_tool = OnDemandLoaderTool.from_defaults(
|
| 46 |
-
SimpleWebPageReader(html_to_text=True),
|
| 47 |
-
name="Webpage search tool",
|
| 48 |
-
description="A tool for loading the content of a webpage and querying it for information",
|
| 49 |
-
)
|
| 50 |
|
| 51 |
-
self.agent =
|
| 52 |
-
tools=[search_tool
|
|
|
|
|
|
|
| 53 |
llm=llm,
|
| 54 |
verbose=True,
|
| 55 |
system_prompt = (
|
|
@@ -68,8 +58,12 @@ class BasicAgent:
|
|
| 68 |
|
| 69 |
# self.ctx = Context(self.agent)
|
| 70 |
|
| 71 |
-
async def __call__(self, question: str) -> str:
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
if self.langfuse:
|
| 75 |
self.instrumentor.flush()
|
|
|
|
|
|
|
|
|
|
| 1 |
from llama_index.core.tools import FunctionTool
|
| 2 |
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
| 3 |
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
|
| 4 |
from llama_index.tools.wikipedia import WikipediaToolSpec
|
|
|
|
|
|
|
|
|
|
| 5 |
from langfuse.llama_index import LlamaIndexInstrumentor
|
| 6 |
from llama_index.llms.ollama import Ollama
|
| 7 |
+
from llama_index.core.agent.workflow import FunctionAgent
|
| 8 |
+
|
| 9 |
+
from multimodality_tools import get_image_qa_tool, get_transcription_tool, \
|
| 10 |
+
get_excel_analysis_tool, get_excel_tool, get_csv_analysis_tool, get_csv_tool
|
| 11 |
|
| 12 |
class BasicAgent:
|
| 13 |
+
def __init__(self, ollama=False, langfuse=False):
|
| 14 |
if not ollama:
|
| 15 |
llm = HuggingFaceInferenceAPI(model_name="Qwen/Qwen2.5-Coder-32B-Instruct")
|
| 16 |
else:
|
|
|
|
| 26 |
tool_spec = DuckDuckGoSearchToolSpec()
|
| 27 |
search_tool = FunctionTool.from_defaults(tool_spec.duckduckgo_full_search)
|
| 28 |
|
|
|
|
|
|
|
|
|
|
| 29 |
# Convert into a LoadAndSearchToolSpec because the wikipedia search tool returns
|
| 30 |
# entire Wikipedia pages and this can pollute the context window of the LLM
|
| 31 |
wiki_spec = WikipediaToolSpec()
|
|
|
|
| 33 |
|
| 34 |
# Convert into a LoadAndSearchToolSpec because the wikipedia search tool returns
|
| 35 |
# entire Wikipedia pages and this can pollute the context window of the LLM
|
|
|
|
| 36 |
# TODO this does not work so well. We need to make the retriever return the top 5 chunks or sth.
|
| 37 |
+
# wiki_search_tool_las = LoadAndSearchToolSpec.from_defaults(wiki_search_tool).to_tool_list()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
self.agent = FunctionAgent(
|
| 40 |
+
tools=[search_tool, wiki_search_tool, get_image_qa_tool(),
|
| 41 |
+
get_transcription_tool(), get_excel_analysis_tool(), get_excel_tool(),
|
| 42 |
+
get_csv_analysis_tool(), get_csv_tool()],
|
| 43 |
llm=llm,
|
| 44 |
verbose=True,
|
| 45 |
system_prompt = (
|
|
|
|
| 58 |
|
| 59 |
# self.ctx = Context(self.agent)
|
| 60 |
|
| 61 |
+
async def __call__(self, question: str, task_id: str = None) -> str:
|
| 62 |
+
file_str = ""
|
| 63 |
+
if task_id:
|
| 64 |
+
file_str = f'\nIf you need to load a file, do so by providing the id "{task_id}".'
|
| 65 |
+
|
| 66 |
+
response = await self.agent.run(user_msg=question + file_str) # ctx=self.ctx)
|
| 67 |
|
| 68 |
if self.langfuse:
|
| 69 |
self.instrumentor.flush()
|
multimodality_tools.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Tools to handle multimodal understandig."""
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import io
|
| 5 |
+
import requests
|
| 6 |
+
|
| 7 |
+
import librosa
|
| 8 |
+
import soundfile as sf
|
| 9 |
+
import pandas as pd
|
| 10 |
+
from llama_index.core.tools import FunctionTool
|
| 11 |
+
from huggingface_hub import InferenceClient
|
| 12 |
+
from transformers import pipeline
|
| 13 |
+
|
| 14 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 15 |
+
|
| 16 |
+
def transcribe_audio(file_id: str) -> str:
|
| 17 |
+
"""
|
| 18 |
+
Transcribes an English audio file identfied by its id.
|
| 19 |
+
"""
|
| 20 |
+
try:
|
| 21 |
+
audio, sr = sf.read(_get_file(file_id))
|
| 22 |
+
if sr != 16000:
|
| 23 |
+
audio = librosa.resample(audio, orig_sr=sr, target_sr=16000)
|
| 24 |
+
except:
|
| 25 |
+
return "Error: Invalid file. This file is either not an audio file or the id does not exist."
|
| 26 |
+
|
| 27 |
+
asr = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
|
| 28 |
+
|
| 29 |
+
output = asr(audio, language="en")
|
| 30 |
+
|
| 31 |
+
return output["text"].strip()
|
| 32 |
+
|
| 33 |
+
def transcribe_audio_hf(file_id: str) -> str:
|
| 34 |
+
"""
|
| 35 |
+
Transcribes an audio file identfied by its id.
|
| 36 |
+
"""
|
| 37 |
+
#audio, sr = sf.read(_get_file(file_id))
|
| 38 |
+
try:
|
| 39 |
+
audio_bytes = _get_file(file_id).read()
|
| 40 |
+
except:
|
| 41 |
+
return "Error: Invalid file. This file is either not an audio file or the id does not exist."
|
| 42 |
+
|
| 43 |
+
client = InferenceClient(
|
| 44 |
+
provider="hf-inference",
|
| 45 |
+
api_key=os.getenv("HF_TOKEN"),
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
output = client.automatic_speech_recognition(audio_bytes, model="openai/whisper-small")
|
| 49 |
+
return output
|
| 50 |
+
|
| 51 |
+
def get_transcription_tool():
|
| 52 |
+
return FunctionTool.from_defaults(
|
| 53 |
+
fn=transcribe_audio,
|
| 54 |
+
description="Transcribes an audio file identified by its id."
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def answer_image_question(question: str, file_id: str) -> str:
|
| 59 |
+
"""
|
| 60 |
+
Answers questions about an image identified by its id.
|
| 61 |
+
"""
|
| 62 |
+
client = InferenceClient(
|
| 63 |
+
provider="hf-inference",
|
| 64 |
+
api_key=os.getenv("HF_TOKEN"),
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
completion = client.chat.completions.create(
|
| 68 |
+
model= "Qwen/Qwen2.5-VL-32B-Instruct",
|
| 69 |
+
messages=[
|
| 70 |
+
{
|
| 71 |
+
"role": "user",
|
| 72 |
+
"content": [
|
| 73 |
+
{
|
| 74 |
+
"type": "text",
|
| 75 |
+
"text": question
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"type": "image_url",
|
| 79 |
+
"image_url": {
|
| 80 |
+
"url": DEFAULT_API_URL + f"/files/{file_id}",
|
| 81 |
+
}
|
| 82 |
+
}
|
| 83 |
+
]
|
| 84 |
+
}
|
| 85 |
+
],
|
| 86 |
+
max_tokens=512,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
return completion.choices[0].message.content
|
| 90 |
+
|
| 91 |
+
def get_image_qa_tool():
|
| 92 |
+
return FunctionTool.from_defaults(
|
| 93 |
+
fn=answer_image_question,
|
| 94 |
+
description="Answer a question about a given image. The image is identified by a file id."
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
def read_excel(file_id: str) -> str:
|
| 98 |
+
file_io = _get_file(file_id)
|
| 99 |
+
df = pd.read_excel(file_io)
|
| 100 |
+
return df.to_markdown()
|
| 101 |
+
|
| 102 |
+
def get_excel_tool():
|
| 103 |
+
return FunctionTool.from_defaults(
|
| 104 |
+
fn=read_excel,
|
| 105 |
+
description="Convert an excel file that is identified by its file id into a markdown string."
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
def analyse_excel(file_id: str) -> str:
|
| 109 |
+
file_io = _get_file(file_id)
|
| 110 |
+
df = pd.read_excel(file_io)
|
| 111 |
+
return df.describe()
|
| 112 |
+
|
| 113 |
+
def get_excel_analysis_tool():
|
| 114 |
+
return FunctionTool.from_defaults(
|
| 115 |
+
fn=read_excel,
|
| 116 |
+
description="Analyse an excel file that is identified by its file id and get common statistics such as mean or max per column."
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
def read_csv(file_id: str) -> str:
|
| 120 |
+
file_io = _get_file(file_id)
|
| 121 |
+
df = pd.read_csv(file_io)
|
| 122 |
+
return df.to_markdown()
|
| 123 |
+
|
| 124 |
+
def get_csv_tool():
|
| 125 |
+
return FunctionTool.from_defaults(
|
| 126 |
+
fn=read_excel,
|
| 127 |
+
description="Convert a csv file that is identified by its file id into a markdown string."
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
def analyse_csv(file_id: str) -> str:
|
| 131 |
+
file_io = _get_file(file_id)
|
| 132 |
+
df = pd.read_csv(file_io)
|
| 133 |
+
return df.describe()
|
| 134 |
+
|
| 135 |
+
def get_csv_analysis_tool():
|
| 136 |
+
return FunctionTool.from_defaults(
|
| 137 |
+
fn=read_excel,
|
| 138 |
+
description="Analyse a csv file that is identified by its file id and get common statistics such as mean or max per column."
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
def watch_video(video_url: str) -> str:
|
| 142 |
+
return "You are not able to watch a Video yet. Reply with 'I don't know' to the question."
|
| 143 |
+
|
| 144 |
+
def get_video_tool():
|
| 145 |
+
return FunctionTool.from_defaults(
|
| 146 |
+
fn=watch_video,
|
| 147 |
+
description="Watch a video and get a content description as a string."
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
def _get_file(task_id: str) -> io.BytesIO:
|
| 151 |
+
res = requests.get(DEFAULT_API_URL + f"/files/{task_id}")
|
| 152 |
+
if res.status_code != 200:
|
| 153 |
+
raise FileNotFoundError("Invalid file or task id.")
|
| 154 |
+
file_like = io.BytesIO(res.content)
|
| 155 |
+
return file_like
|
requirements.txt
CHANGED
|
@@ -7,4 +7,11 @@ llama_index-tools-wikipedia
|
|
| 7 |
llama-index-embeddings-huggingface
|
| 8 |
llama-index-readers-web
|
| 9 |
llama-index-llms-ollama
|
| 10 |
-
langfuse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
llama-index-embeddings-huggingface
|
| 8 |
llama-index-readers-web
|
| 9 |
llama-index-llms-ollama
|
| 10 |
+
langfuse
|
| 11 |
+
tabulate
|
| 12 |
+
soundfile
|
| 13 |
+
librosa
|
| 14 |
+
pillow
|
| 15 |
+
pandas
|
| 16 |
+
huggingface_hub
|
| 17 |
+
transformers
|