from llama_index.core.agent.workflow import AgentWorkflow from llama_index.core.workflow import Context from llama_index.core.tools import FunctionTool from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec from llama_index.tools.wikipedia import WikipediaToolSpec from llama_index.core.tools.tool_spec.load_and_search import LoadAndSearchToolSpec from llama_index.readers.web import SimpleWebPageReader from llama_index.core.tools.ondemand_loader_tool import OnDemandLoaderTool from langfuse.llama_index import LlamaIndexInstrumentor from llama_index.llms.ollama import Ollama from llama_index.core.agent.workflow import ReActAgent, FunctionAgent class BasicAgent: def __init__(self, ollama=False, langfuse=True): if not ollama: llm = HuggingFaceInferenceAPI(model_name="Qwen/Qwen2.5-Coder-32B-Instruct") else: llm = Ollama(model="mistral:latest", request_timeout=120.0) # Langfuse self.langfuse = langfuse if self.langfuse: self.instrumentor = LlamaIndexInstrumentor() self.instrumentor.start() # Initialize tools tool_spec = DuckDuckGoSearchToolSpec() search_tool = FunctionTool.from_defaults(tool_spec.duckduckgo_full_search) wiki_spec = WikipediaToolSpec() wiki_search_tool = wiki_spec.to_tool_list()[1] # Convert into a LoadAndSearchToolSpec because the wikipedia search tool returns # entire Wikipedia pages and this can pollute the context window of the LLM wiki_spec = WikipediaToolSpec() wiki_search_tool = wiki_spec.to_tool_list()[1] # Convert into a LoadAndSearchToolSpec because the wikipedia search tool returns # entire Wikipedia pages and this can pollute the context window of the LLM # TODO this does not work so well. We need to make the retriever return the top 5 chunks or sth. wiki_search_tool_las = LoadAndSearchToolSpec.from_defaults(wiki_search_tool).to_tool_list() webpage_tool = OnDemandLoaderTool.from_defaults( SimpleWebPageReader(html_to_text=True), name="Webpage search tool", description="A tool for loading the content of a webpage and querying it for information", ) self.agent = AgentWorkflow.from_tools_or_functions( # ReActAgent( tools=[search_tool], # webpage_tool does not work properly - cookies etc llm=llm, verbose=True, system_prompt = ( "You are a general AI assistant. I will ask you a question. " "Report your thoughts, and finish your answer with the following template: " "FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number " "OR as few words as possible OR a comma separated list of numbers and/or " "strings. If you are asked for a number, don't use comma to write your " "number neither use units such as $ or percent sign unless specified otherwise. " "If you are asked for a string, don't use articles, neither abbreviations (e.g. " "for cities), and write the digits in plain text unless specified otherwise. If " "you are asked for a comma separated list, apply the above rules depending of " "whether the element to be put in the list is a number or a string." ) ) # self.ctx = Context(self.agent) async def __call__(self, question: str) -> str: response = await self.agent.run(user_msg=question) # ctx=self.ctx) if self.langfuse: self.instrumentor.flush() return response.response.content.replace("FINAL ANSWER:", "").strip()