File size: 1,291 Bytes
6a1c675 36731b2 81d8b1f e57c949 4d9e0d3 aa7490c 4d9e0d3 204c2f2 4d9e0d3 1fc79f6 4d9e0d3 e57c949 aa7490c 81d8b1f 06ca688 81d8b1f 6f1eb22 66c3c67 4d9e0d3 607dce9 4d9e0d3 204c2f2 f6b438c 204c2f2 f6b438c 81d8b1f 1a03ff7 6a1c675 1a03ff7 6a1c675 498e3c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
import g4f
import telebot
import nest_asyncio
from g4f import Provider, models
from langchain.llms.base import LLM
import os
token=os.environ.get("TOKEN")
from langchain_g4f import G4FLLM
from gradio_client import Client
client = Client("https://docfile-lllz.hf.space/--replicas/8blf2/")
nest_asyncio.apply()
bot = telebot.TeleBot(token)
@bot.message_handler(commands=['start', 'help'])
def send_welcome(message):
bot.reply_to(message, " Bonjour/Bonsoir. Quelle est votre question ? ")
@bot.message_handler(func=lambda message: True)
def echo_all(message):
user_input = message.text
print(user_input)
user_input = str(user_input)
#response = g4f.ChatCompletion.create(model="gpt-3.5-turbo",provider=g4f.Provider.ChatgptLogin,messages=[{"role": "user", "content":user_input}],stream=False)
#res = llm(user_input)
result = client.predict(
user_input, # str in 'query' Textbox component
api_name="/predict")
bot.reply_to(message,result)
#bot.infinity_polling()
def addition(nombre1, nombre2):
resultat = nombre1 + nombre2
bot.infinity_polling()
return resultat
interface = gr.Interface(fn=addition, inputs=["number", "number"], outputs="number", live=True, title="Calculatrice")
interface.launch()
|