Spaces:
kuro223
/
Runtime error

File size: 1,291 Bytes
6a1c675
36731b2
81d8b1f
e57c949
4d9e0d3
 
aa7490c
 
4d9e0d3
 
204c2f2
 
4d9e0d3
1fc79f6
4d9e0d3
e57c949
aa7490c
81d8b1f
 
 
06ca688
81d8b1f
 
 
6f1eb22
66c3c67
 
4d9e0d3
607dce9
4d9e0d3
204c2f2
f6b438c
 
 
204c2f2
 
f6b438c
81d8b1f
1a03ff7
6a1c675
 
1a03ff7
6a1c675
 
 
498e3c5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr
import g4f
import telebot
import nest_asyncio
from g4f import Provider, models
from langchain.llms.base import LLM
import os 
token=os.environ.get("TOKEN")

from langchain_g4f import G4FLLM
from gradio_client import Client


client = Client("https://docfile-lllz.hf.space/--replicas/8blf2/")

nest_asyncio.apply()
bot = telebot.TeleBot(token)

@bot.message_handler(commands=['start', 'help'])
def send_welcome(message):
	bot.reply_to(message, " Bonjour/Bonsoir. Quelle est votre question ? ")

@bot.message_handler(func=lambda message: True)
def echo_all(message):
    user_input = message.text
    print(user_input)
    user_input = str(user_input)
    #response = g4f.ChatCompletion.create(model="gpt-3.5-turbo",provider=g4f.Provider.ChatgptLogin,messages=[{"role": "user", "content":user_input}],stream=False)
    

    #res = llm(user_input)

    
    result = client.predict(
				user_input,	# str in 'query' Textbox component
				api_name="/predict")
    bot.reply_to(message,result)

#bot.infinity_polling()
def addition(nombre1, nombre2):
    resultat = nombre1 + nombre2
    bot.infinity_polling()
    return resultat
    

interface = gr.Interface(fn=addition, inputs=["number", "number"], outputs="number", live=True, title="Calculatrice") 
interface.launch()