kushi0002 commited on
Commit
ebe552f
·
verified ·
1 Parent(s): 47ddba1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -60
app.py CHANGED
@@ -1,64 +1,51 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  ],
60
- )
61
-
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
+ from transformers import pipeline
3
+ import gradio as gr
4
 
5
+ # Input language translators (to English)
6
+ input_translators = {
7
+ "Hindi": pipeline("translation_hi_to_en", model="Helsinki-NLP/opus-mt-hi-en"),
8
+ "French": pipeline("translation_fr_to_en", model="Helsinki-NLP/opus-mt-fr-en"),
9
+ "German": pipeline("translation_de_to_en", model="Helsinki-NLP/opus-mt-de-en"),
10
+ "English": None # No translation needed
11
+ }
12
+
13
+ # Summarization model
14
+ summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
15
+
16
+ # Output translators (English → target)
17
+ output_translators = {
18
+ "None": None,
19
+ "Hindi": pipeline("translation_en_to_hi", model="Helsinki-NLP/opus-mt-en-hi"),
20
+ "French": pipeline("translation_en_to_fr", model="Helsinki-NLP/opus-mt-en-fr"),
21
+ "German": pipeline("translation_en_to_de", model="Helsinki-NLP/opus-mt-en-de"),
22
+ }
23
+
24
+ def summarize_multilang(text, input_lang, output_lang):
25
+ # Step 1: Translate to English (if needed)
26
+ if input_lang != "English":
27
+ translator = input_translators[input_lang]
28
+ text = translator(text)[0]['translation_text']
29
+
30
+ # Step 2: Summarize
31
+ summary = summarizer(text, max_length=130, min_length=30, do_sample=False)[0]['summary_text']
32
+
33
+ # Step 3: Translate summary (if needed)
34
+ if output_lang != "None":
35
+ summary = output_translators[output_lang](summary)[0]['translation_text']
36
+
37
+ return summary
38
+
39
+ # Gradio interface
40
+ gr.Interface(
41
+ fn=summarize_multilang,
42
+ inputs=[
43
+ gr.Textbox(lines=10, label="Input Text"),
44
+ gr.Dropdown(choices=["English", "Hindi", "French", "German"], label="Input Language"),
45
+ gr.Dropdown(choices=["None", "Hindi", "French", "German"], label="Translate Summary To")
46
  ],
47
+ outputs=gr.Textbox(label="Final Summary"),
48
+ title="SummarAI",
49
+ description="Supports input in Hindi, French, German, or English. Summarizes and optionally translates the summary."
50
+ ).launch()
51