Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
from PIL import Image
|
| 3 |
import streamlit as st
|
|
@@ -8,11 +13,6 @@ model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-cap
|
|
| 8 |
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 10 |
|
| 11 |
-
# Load the pre-trained model and tokenizer
|
| 12 |
-
model_name = "gpt2"
|
| 13 |
-
tokenizer_1 = GPT2Tokenizer.from_pretrained(model_name)
|
| 14 |
-
model_2 = GPT2LMHeadModel.from_pretrained(model_name)
|
| 15 |
-
|
| 16 |
def generate_captions(image):
|
| 17 |
image = Image.open(image).convert("RGB")
|
| 18 |
generated_caption = tokenizer.decode(model.generate(feature_extractor(image, return_tensors="pt").pixel_values.to("cpu"))[0])
|
|
@@ -21,21 +21,27 @@ def generate_captions(image):
|
|
| 21 |
generated_caption = sentence.replace(text_to_remove, "")
|
| 22 |
return generated_caption
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
# Tokenize the prompt
|
| 27 |
-
input_ids = tokenizer_1.encode(prompt, return_tensors="pt")
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
#
|
| 33 |
-
|
| 34 |
-
return paragraph
|
| 35 |
|
|
|
|
|
|
|
| 36 |
# create the Streamlit app
|
| 37 |
def app():
|
| 38 |
-
st.title('Image from your Side,
|
| 39 |
|
| 40 |
st.write('Upload an image to see what we have in store.')
|
| 41 |
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import openai
|
| 3 |
+
api_key = os.environ.get('OPENAI_API_KEY')
|
| 4 |
+
openai.api_key = api_key
|
| 5 |
+
|
| 6 |
import numpy as np
|
| 7 |
from PIL import Image
|
| 8 |
import streamlit as st
|
|
|
|
| 13 |
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 14 |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
def generate_captions(image):
|
| 17 |
image = Image.open(image).convert("RGB")
|
| 18 |
generated_caption = tokenizer.decode(model.generate(feature_extractor(image, return_tensors="pt").pixel_values.to("cpu"))[0])
|
|
|
|
| 21 |
generated_caption = sentence.replace(text_to_remove, "")
|
| 22 |
return generated_caption
|
| 23 |
|
| 24 |
+
def generate_paragraph(caption):
|
| 25 |
+
prompt = "Generate a paragraph based on the following caption: " + caption
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
# Make the API call to GPT-3
|
| 28 |
+
response = openai.Completion.create(
|
| 29 |
+
engine='text-davinci-003', # Specify the GPT-3 model
|
| 30 |
+
prompt=prompt,
|
| 31 |
+
max_tokens=200, # Adjust the desired length of the generated text
|
| 32 |
+
n = 1, # Set the number of completions to generate
|
| 33 |
+
stop=None, # Specify an optional stop sequence
|
| 34 |
+
temperature=0.7 # Adjust the temperature for randomness (between 0 and 1)
|
| 35 |
+
)
|
| 36 |
|
| 37 |
+
# Extract the generated text from the API response
|
| 38 |
+
generated_text = response.choices[0].text.strip()
|
|
|
|
| 39 |
|
| 40 |
+
return generated_text
|
| 41 |
+
|
| 42 |
# create the Streamlit app
|
| 43 |
def app():
|
| 44 |
+
st.title('Image from your Side, Detailed description from my site')
|
| 45 |
|
| 46 |
st.write('Upload an image to see what we have in store.')
|
| 47 |
|