Spaces:
Runtime error
Runtime error
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from copy import deepcopy | |
| from typing import List, Optional, Union | |
| import numpy as np | |
| import PIL | |
| import torch | |
| import torch.nn.functional as F | |
| from PIL import Image | |
| from ...models import UNet2DConditionModel, VQModel | |
| from ...pipelines import DiffusionPipeline | |
| from ...pipelines.pipeline_utils import ImagePipelineOutput | |
| from ...schedulers import DDPMScheduler | |
| from ...utils import ( | |
| is_accelerate_available, | |
| is_accelerate_version, | |
| logging, | |
| randn_tensor, | |
| replace_example_docstring, | |
| ) | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> from diffusers import KandinskyV22InpaintPipeline, KandinskyV22PriorPipeline | |
| >>> from diffusers.utils import load_image | |
| >>> import torch | |
| >>> import numpy as np | |
| >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( | |
| ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipe_prior.to("cuda") | |
| >>> prompt = "a hat" | |
| >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) | |
| >>> pipe = KandinskyV22InpaintPipeline.from_pretrained( | |
| ... "kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipe.to("cuda") | |
| >>> init_image = load_image( | |
| ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
| ... "/kandinsky/cat.png" | |
| ... ) | |
| >>> mask = np.ones((768, 768), dtype=np.float32) | |
| >>> mask[:250, 250:-250] = 0 | |
| >>> out = pipe( | |
| ... image=init_image, | |
| ... mask_image=mask, | |
| ... image_embeds=image_emb, | |
| ... negative_image_embeds=zero_image_emb, | |
| ... height=768, | |
| ... width=768, | |
| ... num_inference_steps=50, | |
| ... ) | |
| >>> image = out.images[0] | |
| >>> image.save("cat_with_hat.png") | |
| ``` | |
| """ | |
| # Copied from diffusers.pipelines.kandinsky2_2.pipeline_kandinsky2_2.downscale_height_and_width | |
| def downscale_height_and_width(height, width, scale_factor=8): | |
| new_height = height // scale_factor**2 | |
| if height % scale_factor**2 != 0: | |
| new_height += 1 | |
| new_width = width // scale_factor**2 | |
| if width % scale_factor**2 != 0: | |
| new_width += 1 | |
| return new_height * scale_factor, new_width * scale_factor | |
| # Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_inpaint.prepare_mask | |
| def prepare_mask(masks): | |
| prepared_masks = [] | |
| for mask in masks: | |
| old_mask = deepcopy(mask) | |
| for i in range(mask.shape[1]): | |
| for j in range(mask.shape[2]): | |
| if old_mask[0][i][j] == 1: | |
| continue | |
| if i != 0: | |
| mask[:, i - 1, j] = 0 | |
| if j != 0: | |
| mask[:, i, j - 1] = 0 | |
| if i != 0 and j != 0: | |
| mask[:, i - 1, j - 1] = 0 | |
| if i != mask.shape[1] - 1: | |
| mask[:, i + 1, j] = 0 | |
| if j != mask.shape[2] - 1: | |
| mask[:, i, j + 1] = 0 | |
| if i != mask.shape[1] - 1 and j != mask.shape[2] - 1: | |
| mask[:, i + 1, j + 1] = 0 | |
| prepared_masks.append(mask) | |
| return torch.stack(prepared_masks, dim=0) | |
| # Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_inpaint.prepare_mask_and_masked_image | |
| def prepare_mask_and_masked_image(image, mask, height, width): | |
| r""" | |
| Prepares a pair (mask, image) to be consumed by the Kandinsky inpaint pipeline. This means that those inputs will | |
| be converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for | |
| the ``image`` and ``1`` for the ``mask``. | |
| The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be | |
| binarized (``mask > 0.5``) and cast to ``torch.float32`` too. | |
| Args: | |
| image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint. | |
| It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width`` | |
| ``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``. | |
| mask (_type_): The mask to apply to the image, i.e. regions to inpaint. | |
| It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width`` | |
| ``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``. | |
| height (`int`, *optional*, defaults to 512): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to 512): | |
| The width in pixels of the generated image. | |
| Raises: | |
| ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask | |
| should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions. | |
| TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not | |
| (ot the other way around). | |
| Returns: | |
| tuple[torch.Tensor]: The pair (mask, image) as ``torch.Tensor`` with 4 | |
| dimensions: ``batch x channels x height x width``. | |
| """ | |
| if image is None: | |
| raise ValueError("`image` input cannot be undefined.") | |
| if mask is None: | |
| raise ValueError("`mask_image` input cannot be undefined.") | |
| if isinstance(image, torch.Tensor): | |
| if not isinstance(mask, torch.Tensor): | |
| raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not") | |
| # Batch single image | |
| if image.ndim == 3: | |
| assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" | |
| image = image.unsqueeze(0) | |
| # Batch and add channel dim for single mask | |
| if mask.ndim == 2: | |
| mask = mask.unsqueeze(0).unsqueeze(0) | |
| # Batch single mask or add channel dim | |
| if mask.ndim == 3: | |
| # Single batched mask, no channel dim or single mask not batched but channel dim | |
| if mask.shape[0] == 1: | |
| mask = mask.unsqueeze(0) | |
| # Batched masks no channel dim | |
| else: | |
| mask = mask.unsqueeze(1) | |
| assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions" | |
| assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions" | |
| assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size" | |
| # Check image is in [-1, 1] | |
| if image.min() < -1 or image.max() > 1: | |
| raise ValueError("Image should be in [-1, 1] range") | |
| # Check mask is in [0, 1] | |
| if mask.min() < 0 or mask.max() > 1: | |
| raise ValueError("Mask should be in [0, 1] range") | |
| # Binarize mask | |
| mask[mask < 0.5] = 0 | |
| mask[mask >= 0.5] = 1 | |
| # Image as float32 | |
| image = image.to(dtype=torch.float32) | |
| elif isinstance(mask, torch.Tensor): | |
| raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not") | |
| else: | |
| # preprocess image | |
| if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
| image = [image] | |
| if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
| # resize all images w.r.t passed height an width | |
| image = [i.resize((width, height), resample=Image.BICUBIC, reducing_gap=1) for i in image] | |
| image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
| image = np.concatenate(image, axis=0) | |
| elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
| image = np.concatenate([i[None, :] for i in image], axis=0) | |
| image = image.transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
| # preprocess mask | |
| if isinstance(mask, (PIL.Image.Image, np.ndarray)): | |
| mask = [mask] | |
| if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image): | |
| mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask] | |
| mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0) | |
| mask = mask.astype(np.float32) / 255.0 | |
| elif isinstance(mask, list) and isinstance(mask[0], np.ndarray): | |
| mask = np.concatenate([m[None, None, :] for m in mask], axis=0) | |
| mask[mask < 0.5] = 0 | |
| mask[mask >= 0.5] = 1 | |
| mask = torch.from_numpy(mask) | |
| return mask, image | |
| class KandinskyV22InpaintPipeline(DiffusionPipeline): | |
| """ | |
| Pipeline for text-guided image inpainting using Kandinsky2.1 | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| scheduler ([`DDIMScheduler`]): | |
| A scheduler to be used in combination with `unet` to generate image latents. | |
| unet ([`UNet2DConditionModel`]): | |
| Conditional U-Net architecture to denoise the image embedding. | |
| movq ([`VQModel`]): | |
| MoVQ Decoder to generate the image from the latents. | |
| """ | |
| def __init__( | |
| self, | |
| unet: UNet2DConditionModel, | |
| scheduler: DDPMScheduler, | |
| movq: VQModel, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| unet=unet, | |
| scheduler=scheduler, | |
| movq=movq, | |
| ) | |
| self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) | |
| # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents | |
| def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| latents = latents * scheduler.init_noise_sigma | |
| return latents | |
| # Copied from diffusers.pipelines.kandinsky2_2.pipeline_kandinsky2_2.KandinskyV22Pipeline.enable_sequential_cpu_offload | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's | |
| models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only | |
| when their specific submodule has its `forward` method called. | |
| """ | |
| if is_accelerate_available(): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("Please install accelerate via `pip install accelerate`") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| models = [ | |
| self.unet, | |
| self.movq, | |
| ] | |
| for cpu_offloaded_model in models: | |
| if cpu_offloaded_model is not None: | |
| cpu_offload(cpu_offloaded_model, device) | |
| # Copied from diffusers.pipelines.kandinsky2_2.pipeline_kandinsky2_2.KandinskyV22Pipeline.enable_model_cpu_offload | |
| def enable_model_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
| to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
| method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
| `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
| """ | |
| if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
| from accelerate import cpu_offload_with_hook | |
| else: | |
| raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| if self.device.type != "cpu": | |
| self.to("cpu", silence_dtype_warnings=True) | |
| torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
| hook = None | |
| for cpu_offloaded_model in [self.unet, self.movq]: | |
| _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
| # We'll offload the last model manually. | |
| self.final_offload_hook = hook | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device | |
| def _execution_device(self): | |
| r""" | |
| Returns the device on which the pipeline's models will be executed. After calling | |
| `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
| hooks. | |
| """ | |
| if not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def __call__( | |
| self, | |
| image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]], | |
| image: Union[torch.FloatTensor, PIL.Image.Image], | |
| mask_image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray], | |
| negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]], | |
| height: int = 512, | |
| width: int = 512, | |
| num_inference_steps: int = 100, | |
| guidance_scale: float = 4.0, | |
| num_images_per_prompt: int = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| ): | |
| """ | |
| Args: | |
| Function invoked when calling the pipeline for generation. | |
| image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): | |
| The clip image embeddings for text prompt, that will be used to condition the image generation. | |
| image (`PIL.Image.Image`): | |
| `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will | |
| be masked out with `mask_image` and repainted according to `prompt`. | |
| mask_image (`np.array`): | |
| Tensor representing an image batch, to mask `image`. Black pixels in the mask will be repainted, while | |
| white pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single | |
| channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, | |
| so the expected shape would be `(B, H, W, 1)`. | |
| negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): | |
| The clip image embeddings for negative text prompt, will be used to condition the image generation. | |
| height (`int`, *optional*, defaults to 512): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to 512): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 100): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 4.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` | |
| (`np.array`) or `"pt"` (`torch.Tensor`). | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
| Examples: | |
| Returns: | |
| [`~pipelines.ImagePipelineOutput`] or `tuple` | |
| """ | |
| device = self._execution_device | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| if isinstance(image_embeds, list): | |
| image_embeds = torch.cat(image_embeds, dim=0) | |
| batch_size = image_embeds.shape[0] * num_images_per_prompt | |
| if isinstance(negative_image_embeds, list): | |
| negative_image_embeds = torch.cat(negative_image_embeds, dim=0) | |
| if do_classifier_free_guidance: | |
| image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to(dtype=self.unet.dtype, device=device) | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps_tensor = self.scheduler.timesteps | |
| # preprocess image and mask | |
| mask_image, image = prepare_mask_and_masked_image(image, mask_image, height, width) | |
| image = image.to(dtype=image_embeds.dtype, device=device) | |
| image = self.movq.encode(image)["latents"] | |
| mask_image = mask_image.to(dtype=image_embeds.dtype, device=device) | |
| image_shape = tuple(image.shape[-2:]) | |
| mask_image = F.interpolate( | |
| mask_image, | |
| image_shape, | |
| mode="nearest", | |
| ) | |
| mask_image = prepare_mask(mask_image) | |
| masked_image = image * mask_image | |
| mask_image = mask_image.repeat_interleave(num_images_per_prompt, dim=0) | |
| masked_image = masked_image.repeat_interleave(num_images_per_prompt, dim=0) | |
| if do_classifier_free_guidance: | |
| mask_image = mask_image.repeat(2, 1, 1, 1) | |
| masked_image = masked_image.repeat(2, 1, 1, 1) | |
| num_channels_latents = self.movq.config.latent_channels | |
| height, width = downscale_height_and_width(height, width, self.movq_scale_factor) | |
| # create initial latent | |
| latents = self.prepare_latents( | |
| (batch_size, num_channels_latents, height, width), | |
| image_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| self.scheduler, | |
| ) | |
| noise = torch.clone(latents) | |
| for i, t in enumerate(self.progress_bar(timesteps_tensor)): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = torch.cat([latent_model_input, masked_image, mask_image], dim=1) | |
| added_cond_kwargs = {"image_embeds": image_embeds} | |
| noise_pred = self.unet( | |
| sample=latent_model_input, | |
| timestep=t, | |
| encoder_hidden_states=None, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| if do_classifier_free_guidance: | |
| noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1) | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| _, variance_pred_text = variance_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) | |
| if not ( | |
| hasattr(self.scheduler.config, "variance_type") | |
| and self.scheduler.config.variance_type in ["learned", "learned_range"] | |
| ): | |
| noise_pred, _ = noise_pred.split(latents.shape[1], dim=1) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, | |
| t, | |
| latents, | |
| generator=generator, | |
| )[0] | |
| init_latents_proper = image[:1] | |
| init_mask = mask_image[:1] | |
| if i < len(timesteps_tensor) - 1: | |
| noise_timestep = timesteps_tensor[i + 1] | |
| init_latents_proper = self.scheduler.add_noise( | |
| init_latents_proper, noise, torch.tensor([noise_timestep]) | |
| ) | |
| latents = init_mask * init_latents_proper + (1 - init_mask) * latents | |
| # post-processing | |
| latents = mask_image[:1] * image[:1] + (1 - mask_image[:1]) * latents | |
| image = self.movq.decode(latents, force_not_quantize=True)["sample"] | |
| if output_type not in ["pt", "np", "pil"]: | |
| raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") | |
| if output_type in ["np", "pil"]: | |
| image = image * 0.5 + 0.5 | |
| image = image.clamp(0, 1) | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| if output_type == "pil": | |
| image = self.numpy_to_pil(image) | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |