Spaces:
Runtime error
Runtime error
| # A diffuser version implementation of Zero1to3 (https://github.com/cvlab-columbia/zero123), ICCV 2023 | |
| # by Xin Kong | |
| import inspect | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import torch | |
| from packaging import version | |
| from transformers import CLIPFeatureExtractor, CLIPVisionModelWithProjection, ConvNextV2Model, AutoImageProcessor | |
| from CN_encoder import CN_encoder | |
| # todo import convnext | |
| from torchvision import transforms | |
| import einops | |
| # from ...configuration_utils import FrozenDict | |
| # from ...models import AutoencoderKL, UNet2DConditionModel | |
| # from ...schedulers import KarrasDiffusionSchedulers | |
| # from ...utils import ( | |
| # deprecate, | |
| # is_accelerate_available, | |
| # is_accelerate_version, | |
| # logging, | |
| # randn_tensor, | |
| # replace_example_docstring, | |
| # ) | |
| # from ..pipeline_utils import DiffusionPipeline | |
| # from . import StableDiffusionPipelineOutput | |
| # from .safety_checker import StableDiffusionSafetyChecker | |
| from unet_2d_condition import UNet2DConditionModel | |
| from diffusers import AutoencoderKL, DiffusionPipeline | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.utils import ( | |
| deprecate, | |
| is_accelerate_available, | |
| is_accelerate_version, | |
| randn_tensor, | |
| replace_example_docstring, | |
| ) | |
| from diffusers.utils import logging | |
| from diffusers.configuration_utils import FrozenDict | |
| import PIL | |
| import numpy as np | |
| import kornia | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.models.modeling_utils import ModelMixin | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| # todo | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import StableDiffusionPipeline | |
| >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) | |
| >>> pipe = pipe.to("cuda") | |
| >>> prompt = "a photo of an astronaut riding a horse on mars" | |
| >>> image = pipe(prompt).images[0] | |
| ``` | |
| """ | |
| class CCProjection(ModelMixin, ConfigMixin): | |
| def __init__(self, in_channel=772, out_channel=768): | |
| super().__init__() | |
| self.in_channel = in_channel | |
| self.out_channel = out_channel | |
| self.projection = torch.nn.Linear(in_channel, out_channel) | |
| def forward(self, x): | |
| return self.projection(x) | |
| class CLIPProjection(ModelMixin, ConfigMixin): | |
| def __init__(self, in_channel, out_channel): | |
| super().__init__() | |
| self.in_channel = in_channel | |
| self.out_channel = out_channel | |
| # self.post_layernorm = torch.nn.LayerNorm(in_channel) | |
| self.visual_projection = torch.nn.Linear(in_channel, out_channel, bias=False) | |
| def forward(self, x): | |
| # x = self.post_layernorm(x) | |
| return self.visual_projection(x) | |
| class CNLayernorm(ModelMixin, ConfigMixin): | |
| def __init__(self, in_channel, eps): | |
| super().__init__() | |
| self.in_channel = in_channel | |
| self.layernorm = torch.nn.LayerNorm(in_channel, eps=eps) | |
| def forward(self, x): | |
| return self.layernorm(x) | |
| class Zero1to3StableDiffusionPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for single view conditioned novel view generation using Zero1to3. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| image_encoder ([`CLIPVisionModelWithProjection`]): | |
| Frozen CLIP image-encoder. Stable Diffusion Image Variation uses the vision portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection), | |
| specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| safety_checker ([`StableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | |
| feature_extractor ([`CLIPFeatureExtractor`]): | |
| Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
| """ | |
| _optional_components = ["safety_checker", "feature_extractor"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| image_encoder: CN_encoder, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: AutoImageProcessor, | |
| # cc_projection: CCProjection, | |
| # CLIP_projection: CLIPProjection, | |
| requires_safety_checker: bool = True, | |
| ): | |
| super().__init__() | |
| if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
| f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
| "to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
| " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
| " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
| " file" | |
| ) | |
| deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["steps_offset"] = 1 | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." | |
| " `clip_sample` should be set to False in the configuration file. Please make sure to update the" | |
| " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" | |
| " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" | |
| " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" | |
| ) | |
| deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["clip_sample"] = False | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| if safety_checker is None and requires_safety_checker: | |
| logger.warning( | |
| f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
| " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
| " results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
| " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
| " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
| " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
| ) | |
| if safety_checker is not None and feature_extractor is None: | |
| raise ValueError( | |
| "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
| " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
| ) | |
| is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | |
| version.parse(unet.config._diffusers_version).base_version | |
| ) < version.parse("0.9.0.dev0") | |
| is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | |
| if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | |
| deprecation_message = ( | |
| "The configuration file of the unet has set the default `sample_size` to smaller than" | |
| " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" | |
| " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | |
| " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | |
| " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | |
| " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | |
| " in the config might lead to incorrect results in future versions. If you have downloaded this" | |
| " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | |
| " the `unet/config.json` file" | |
| ) | |
| deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(unet.config) | |
| new_config["sample_size"] = 64 | |
| unet._internal_dict = FrozenDict(new_config) | |
| self.register_modules( | |
| vae=vae, | |
| image_encoder=image_encoder, | |
| unet=unet, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| # cc_projection=cc_projection, | |
| # CLIP_projection=CLIP_projection, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.register_to_config(requires_safety_checker=requires_safety_checker) | |
| # self.model_mode = None | |
| self.ConvNextV2_preprocess = transforms.Compose([ | |
| transforms.Resize((224, 224), interpolation=transforms.InterpolationMode.BICUBIC), | |
| # transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
| ]) | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. | |
| When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several | |
| steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| def enable_vae_tiling(self): | |
| r""" | |
| Enable tiled VAE decoding. | |
| When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in | |
| several steps. This is useful to save a large amount of memory and to allow the processing of larger images. | |
| """ | |
| self.vae.enable_tiling() | |
| def disable_vae_tiling(self): | |
| r""" | |
| Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_tiling() | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
| text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | |
| `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | |
| Note that offloading happens on a submodule basis. Memory savings are higher than with | |
| `enable_model_cpu_offload`, but performance is lower. | |
| """ | |
| if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| if self.device.type != "cpu": | |
| self.to("cpu", silence_dtype_warnings=True) | |
| torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
| cpu_offload(cpu_offloaded_model, device) | |
| if self.safety_checker is not None: | |
| cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) | |
| def enable_model_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
| to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
| method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
| `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
| """ | |
| if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
| from accelerate import cpu_offload_with_hook | |
| else: | |
| raise ImportError("`enable_model_offload` requires `accelerate v0.17.0` or higher.") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| if self.device.type != "cpu": | |
| self.to("cpu", silence_dtype_warnings=True) | |
| torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
| hook = None | |
| for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]: | |
| _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
| if self.safety_checker is not None: | |
| _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) | |
| # We'll offload the last model manually. | |
| self.final_offload_hook = hook | |
| def _execution_device(self): | |
| r""" | |
| Returns the device on which the pipeline's models will be executed. After calling | |
| `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
| hooks. | |
| """ | |
| if not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | |
| Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| """ | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| prompt_embeds = prompt_embeds[0] | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| return prompt_embeds | |
| def CLIP_preprocess(self, x): | |
| dtype = x.dtype | |
| # following openai's implementation | |
| # TODO HF OpenAI CLIP preprocessing issue https://github.com/huggingface/transformers/issues/22505#issuecomment-1650170741 | |
| # follow openai preprocessing to keep exact same, input tensor [-1, 1], otherwise the preprocessing will be different, https://github.com/huggingface/transformers/pull/22608 | |
| if isinstance(x, torch.Tensor): | |
| if x.min() < -1.0 or x.max() > 1.0: | |
| raise ValueError("Expected input tensor to have values in the range [-1, 1]") | |
| x = kornia.geometry.resize(x.to(torch.float32), (224, 224), interpolation='bicubic', align_corners=True, antialias=False).to(dtype=dtype) | |
| x = (x + 1.) / 2. | |
| # renormalize according to clip | |
| x = kornia.enhance.normalize(x, torch.Tensor([0.48145466, 0.4578275, 0.40821073]), | |
| torch.Tensor([0.26862954, 0.26130258, 0.27577711])) | |
| return x | |
| # from image_variation | |
| def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| if isinstance(image, torch.Tensor): | |
| # Batch single image | |
| if image.ndim == 3: | |
| assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" | |
| image = image.unsqueeze(0) | |
| assert image.ndim == 4, "Image must have 4 dimensions" | |
| # Check image is in [-1, 1] | |
| if image.min() < -1 or image.max() > 1: | |
| raise ValueError("Image should be in [-1, 1] range") | |
| else: | |
| # preprocess image | |
| if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
| image = [image] | |
| if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
| image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
| image = np.concatenate(image, axis=0) | |
| elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
| image = np.concatenate([i[None, :] for i in image], axis=0) | |
| image = image.transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
| image = image.to(device=device, dtype=dtype) | |
| # image = self.CLIP_preprocess(image) # todo | |
| # if not isinstance(image, torch.Tensor): | |
| # # 0-255 | |
| # print("Warning: image is processed by hf's preprocess, which is different from openai original's.") | |
| # image = self.feature_extractor(images=image, return_tensors="pt").pixel_values | |
| # image_embeddings = self.image_encoder(image).image_embeds.to(dtype=dtype) | |
| # image_embeddings = image_embeddings.unsqueeze(1) | |
| # clip_embeddings = self.image_encoder(image).last_hidden_state.to(dtype=dtype)[:, 1:, :] # bt,257,1024 | |
| # image_embeddings = self.CLIP_projection(clip_embeddings).to(dtype=dtype) # bt,256,768 | |
| # todo | |
| # [-1, 1] -> [0, 1] | |
| image = (image + 1.) / 2. | |
| image = self.ConvNextV2_preprocess(image) | |
| image_embeddings = self.image_encoder(image)#.last_hidden_state # bt, 768, 12, 12 | |
| # image_embeddings = einops.rearrange(image_embeddings, 'b c h w -> b (h w) c') | |
| # image_embeddings = self.CN_layernorm(image_embeddings) # todo | |
| # duplicate image embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = image_embeddings.shape | |
| image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) | |
| image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| # import pdb; pdb.set_trace() # todo debug clip_embeddings bf16, CLIP_projection.layer_norm.weight bf16, but get float32, and after visual_projection, get fp16 rather than bf16 | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
| return image_embeddings | |
| # def _encode_pose(self, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
| # dtype = next(self.cc_projection.parameters()).dtype | |
| # if isinstance(pose, torch.Tensor): | |
| # pose_embeddings = pose.unsqueeze(1).to(device=device, dtype=dtype) | |
| # else: | |
| # if isinstance(pose[0], list): | |
| # pose = torch.Tensor(pose) | |
| # else: | |
| # pose = torch.Tensor([pose]) | |
| # x, y, z = pose[:,0].unsqueeze(1), pose[:,1].unsqueeze(1), pose[:,2].unsqueeze(1) | |
| # pose_embeddings = torch.cat([torch.deg2rad(x), | |
| # torch.sin(torch.deg2rad(y)), | |
| # torch.cos(torch.deg2rad(y)), | |
| # z], dim=-1).unsqueeze(1).to(device=device, dtype=dtype) # B, 1, 4 | |
| # # duplicate pose embeddings for each generation per prompt, using mps friendly method | |
| # bs_embed, seq_len, _ = pose_embeddings.shape | |
| # pose_embeddings = pose_embeddings.repeat(1, num_images_per_prompt, 1) | |
| # pose_embeddings = pose_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| # if do_classifier_free_guidance: | |
| # negative_prompt_embeds = torch.zeros_like(pose_embeddings) | |
| # | |
| # # For classifier free guidance, we need to do two forward passes. | |
| # # Here we concatenate the unconditional and text embeddings into a single batch | |
| # # to avoid doing two forward passes | |
| # pose_embeddings = torch.cat([negative_prompt_embeds, pose_embeddings]) | |
| # return pose_embeddings | |
| # def _encode_image_with_pose(self, image, pose, device, num_images_per_prompt, do_classifier_free_guidance, t_in): | |
| # img_prompt_embeds = self._encode_image(image, device, num_images_per_prompt, False) | |
| # pose_prompt_embeds = self._encode_pose(pose, device, num_images_per_prompt, False) | |
| # pose_prompt_embeds = einops.repeat(pose_prompt_embeds, 'bt l c -> bt (repeat l) c', repeat=img_prompt_embeds.shape[1]) | |
| # prompt_embeds = torch.cat([img_prompt_embeds, pose_prompt_embeds], dim=-1) | |
| # prompt_embeds = self.cc_projection(prompt_embeds) | |
| # if self.CLIP_projection is not None: # todo for multiple generation | |
| # prompt_embeds = einops.rearrange(prompt_embeds, '(b t) l c -> b (t l) c', t=t_in) | |
| # # prompt_embeds = self.ConditionEncoder(prompt_embeds.squeeze(-2)).unsqueeze(-2) | |
| # # follow 0123, add negative prompt, after projection | |
| # if do_classifier_free_guidance: | |
| # negative_prompt = torch.zeros_like(prompt_embeds) | |
| # prompt_embeds = torch.cat([negative_prompt, prompt_embeds]) | |
| # return prompt_embeds | |
| def run_safety_checker(self, image, device, dtype): | |
| if self.safety_checker is not None: | |
| safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) | |
| image, has_nsfw_concept = self.safety_checker( | |
| images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
| ) | |
| else: | |
| has_nsfw_concept = None | |
| return image, has_nsfw_concept | |
| def decode_latents(self, latents): | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| image = self.vae.decode(latents).sample | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| return image | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs(self, image, height, width, callback_steps): | |
| if ( | |
| not isinstance(image, torch.Tensor) | |
| and not isinstance(image, PIL.Image.Image) | |
| and not isinstance(image, list) | |
| ): | |
| raise ValueError( | |
| "`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" | |
| f" {type(image)}" | |
| ) | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
| shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def prepare_img_latents(self, image, batch_size, dtype, device, generator=None, do_classifier_free_guidance=False, t_in=None): | |
| if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| if isinstance(image, torch.Tensor): | |
| # Batch single image | |
| if image.ndim == 3: | |
| assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" | |
| image = image.unsqueeze(0) | |
| assert image.ndim == 4, "Image must have 4 dimensions" | |
| # Check image is in [-1, 1] | |
| if image.min() < -1 or image.max() > 1: | |
| raise ValueError("Image should be in [-1, 1] range") | |
| else: | |
| # preprocess image | |
| if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
| image = [image] | |
| if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
| image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
| image = np.concatenate(image, axis=0) | |
| elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
| image = np.concatenate([i[None, :] for i in image], axis=0) | |
| image = image.transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
| image = image.to(device=device, dtype=dtype) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if isinstance(generator, list): | |
| init_latents = [ | |
| self.vae.encode(image[i : i + 1]).latent_dist.mode(generator[i]) for i in range(batch_size) # sample | |
| ] | |
| init_latents = torch.cat(init_latents, dim=0) | |
| else: | |
| init_latents = self.vae.encode(image).latent_dist.mode() | |
| # init_latents = self.vae.config.scaling_factor * init_latents # todo in original zero123's inference gradio_new.py, model.encode_first_stage() is not scaled by scaling_factor | |
| if batch_size > init_latents.shape[0]: | |
| # init_latents = init_latents.repeat(batch_size // init_latents.shape[0], 1, 1, 1) | |
| num_images_per_prompt = batch_size // init_latents.shape[0] | |
| # duplicate image latents for each generation per prompt, using mps friendly method | |
| bs_embed, emb_c, emb_h, emb_w = init_latents.shape | |
| init_latents = init_latents.unsqueeze(1) | |
| init_latents = init_latents.repeat(1, num_images_per_prompt, 1, 1, 1) | |
| init_latents = init_latents.view(bs_embed * num_images_per_prompt, emb_c, emb_h, emb_w) | |
| # if self.InputEncoder is not None: | |
| # init_latents = einops.rearrange(init_latents, '(b t) c h w -> b t c h w', t=t_in) | |
| # init_latents = self.InputEncoder(init_latents) | |
| # init_latents = torch.cat([init_latents]*2) if do_classifier_free_guidance else init_latents # follow zero123 | |
| init_latents = torch.cat([torch.zeros_like(init_latents), init_latents]) if do_classifier_free_guidance else init_latents | |
| init_latents = init_latents.to(device=device, dtype=dtype) | |
| return init_latents | |
| def __call__( | |
| self, | |
| input_imgs: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
| prompt_imgs: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
| poses: Optional = None, | |
| # projections: Union[List] = None, | |
| torch_dtype=torch.float32, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| T_in: Optional[int] = None, | |
| T_out: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 3.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| controlnet_conditioning_scale: float = 1.0, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| input_imgs (`PIL` or `List[PIL]`, *optional*): | |
| The single input image for each 3D object | |
| prompt_imgs (`PIL` or `List[PIL]`, *optional*): | |
| Same as input_imgs, but will be used later as an image prompt condition, encoded by CLIP feature | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | |
| Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
| When returning a tuple, the first element is a list with the generated images, and the second element is a | |
| list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
| (nsfw) content, according to the `safety_checker`. | |
| """ | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| assert T_out == poses[0][0].shape[1] | |
| # 1. Check inputs. Raise error if not correct | |
| # input_image = hint_imgs | |
| self.check_inputs(input_imgs, height, width, callback_steps) | |
| # # todo hard code | |
| # self.proj3d = Proj3DVolume(volume_dims=[], feature_dims=[], T_in=1, T_out=1, bound=1.0) # todo T_in=1 | |
| # 2. Define call parameters | |
| if isinstance(input_imgs, PIL.Image.Image): | |
| batch_size = 1 | |
| elif isinstance(input_imgs, list): | |
| batch_size = len(input_imgs) | |
| else: | |
| batch_size = input_imgs.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input image with pose as prompt | |
| # prompt_embeds = self._encode_image_with_pose(prompt_imgs, poses, device, num_images_per_prompt, do_classifier_free_guidance, t_in) | |
| prompt_embeds = self._encode_image(prompt_imgs, device, num_images_per_prompt, do_classifier_free_guidance) | |
| prompt_embeds = einops.rearrange(prompt_embeds, '(b t) l c -> b (t l) c', t=T_in) | |
| if do_classifier_free_guidance: | |
| [pose_out, pose_out_inv], [pose_in, pose_in_inv] = poses | |
| pose_in = torch.cat([pose_in] * 2) | |
| pose_out = torch.cat([pose_out] * 2) | |
| pose_in_inv = torch.cat([pose_in_inv] * 2) | |
| pose_out_inv = torch.cat([pose_out_inv] * 2) | |
| poses = [[pose_out, pose_out_inv], [pose_in, pose_in_inv]] | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| latents = self.prepare_latents( | |
| batch_size // T_in * T_out * num_images_per_prompt, # todo use t_out | |
| 4, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| )# todo same init noise along T? | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # latent_model_input = torch.cat([latent_model_input, img_latents], dim=1) | |
| latent_model_input = torch.cat([latent_model_input], dim=1) | |
| # predict the noise residual | |
| noise_pred = self.unet(latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| pose=poses).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| # latents = self.scheduler.step(noise_pred.to(dtype=torch.float32), t, latents.to(dtype=torch.float32)).prev_sample.to(prompt_embeds.dtype) | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| # 8. Post-processing | |
| has_nsfw_concept = None | |
| if output_type == "latent": | |
| image = latents | |
| elif output_type == "pil": | |
| # 8. Post-processing | |
| image = self.decode_latents(latents) | |
| # 10. Convert to PIL | |
| image = self.numpy_to_pil(image) | |
| else: | |
| # 8. Post-processing | |
| image = self.decode_latents(latents) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |