File size: 3,398 Bytes
fac3244
 
 
2f1f8ac
 
fac3244
2f1f8ac
fac3244
 
 
07a9436
fac3244
 
 
 
2f1f8ac
fac3244
2f1f8ac
fac3244
2f1f8ac
 
 
 
 
fac3244
2f1f8ac
fac3244
2f1f8ac
fac3244
2f1f8ac
 
 
 
 
 
 
 
 
fac3244
2f1f8ac
 
 
 
 
 
 
 
 
 
 
 
 
fac3244
2f1f8ac
 
 
 
 
 
fac3244
2f1f8ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fac3244
2f1f8ac
fac3244
2f1f8ac
fac3244
2f1f8ac
 
 
fac3244
 
2f1f8ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fac3244
2f1f8ac
fac3244
2f1f8ac
fac3244
2f1f8ac
fac3244
2f1f8ac
fac3244
2f1f8ac
fac3244
2f1f8ac
 
 
 
 
 
fac3244
 
2f1f8ac
 
 
fac3244
2f1f8ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
title: PLONK Geolocation
emoji: 🗺️
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
license: mit
short_description: Generative Visual Geolocation with PLONK
---

# 🗺️ PLONK: Around the World in 80 Timesteps

A generative approach to global visual geolocation using diffusion models. Upload an image and PLONK will predict where it was taken!

## 🚀 Features

- **High-Quality Predictions**: Uses 32 samples with CFG=2.0 for robust geolocation
- **Uncertainty Estimation**: Provides confidence radius (±km) for each prediction  
- **REST API**: Full programmatic access with JSON responses
- **Multiple Input Methods**: File upload, webcam, clipboard, or base64 encoding
- **CORS Enabled**: Ready for web integration

## 📡 API Usage

### REST API Endpoints

**Main Prediction:**
```
POST https://kylanoconnor-plonk-geolocation.hf.space/api/predict
```

**JSON Response:**
```
POST https://kylanoconnor-plonk-geolocation.hf.space/api/predict_json
```

### Python Example
```python
import requests

# Upload image file
response = requests.post(
    "https://kylanoconnor-plonk-geolocation.hf.space/api/predict",
    files={"file": open("image.jpg", "rb")}
)
result = response.json()
print(f"Location: {result['data']['latitude']}, {result['data']['longitude']}")
print(f"Uncertainty: ±{result['data']['uncertainty_km']} km")
```

### cURL Example
```bash
curl -X POST \
  -F "[email protected]" \
  "https://kylanoconnor-plonk-geolocation.hf.space/api/predict"
```

### JavaScript/Node.js
```javascript
const formData = new FormData();
formData.append('data', imageFile);

const response = await fetch(
    'https://kylanoconnor-plonk-geolocation.hf.space/api/predict',
    {
        method: 'POST',
        body: formData
    }
);

const result = await response.json();
console.log('Location:', result.data);
```

### Gradio Client (Python)
```python
from gradio_client import Client

client = Client("kylanoconnor/plonk-geolocation")
result = client.predict("path/to/image.jpg", api_name="/predict")
print(result)
```

## 🎯 Model Configuration

- **Model**: nicolas-dufour/PLONK_YFCC
- **Dataset**: YFCC-100M  
- **Samples**: 32 (for uncertainty estimation)
- **Guidance Scale**: 2.0
- **Timesteps**: 32
- **Uncertainty**: Statistical analysis across predictions

## 📊 Response Format

```json
{
  "status": "success",
  "mode": "production", 
  "predicted_location": {
    "latitude": 40.756123,
    "longitude": -73.984567
  },
  "confidence": "high",
  "samples": 32,
  "uncertainty_km": 12.3,
  "note": "Real PLONK prediction using 32 samples"
}
```

## 📚 About

**Paper**: [Around the World in 80 Timesteps: A Generative Approach to Global Visual Geolocation](https://arxiv.org/abs/2412.06781)

**Authors**: Nicolas Dufour, David Picard, Vicky Kalogeiton, Loic Landrieu

**Original Code**: https://github.com/nicolas-dufour/plonk

This Space provides both a user-friendly web interface and robust API access for global visual geolocation using the PLONK model. The model uses 32 samples per prediction to provide uncertainty estimation and more reliable results.

## 🔧 Development

To run locally:
```bash
pip install -r requirements_hf_spaces.txt
python app.py
```

The app will be available at `http://localhost:7860` with API documentation at `/docs`.

---

*Built with ❤️ using Gradio and Hugging Face Spaces*