File size: 23,416 Bytes
fac3244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
import torch
from plonk.models.pretrained_models import Plonk
from plonk.models.samplers.riemannian_flow_sampler import riemannian_flow_sampler

from plonk.models.postprocessing import CartesiantoGPS

from plonk.models.schedulers import (
    SigmoidScheduler,
    LinearScheduler,
    CosineScheduler,
)
from plonk.models.preconditioning import DDPMPrecond
from torchvision import transforms
from transformers import CLIPProcessor, CLIPVisionModel
from plonk.utils.image_processing import CenterCrop
import numpy as np
from plonk.utils.manifolds import Sphere
from torch.func import jacrev, vmap, vjp
from torchdiffeq import odeint
from tqdm import tqdm

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
MODELS = {
    "nicolas-dufour/PLONK_YFCC": {"emb_name": "dinov2"},
    "nicolas-dufour/PLONK_OSV_5M": {
        "emb_name": "street_clip",
    },
    "nicolas-dufour/PLONK_iNaturalist": {
        "emb_name": "dinov2",
    },
}


def scheduler_fn(
    scheduler_type: str, start: float, end: float, tau: float, clip_min: float = 1e-9
):
    if scheduler_type == "sigmoid":
        return SigmoidScheduler(start, end, tau, clip_min)
    elif scheduler_type == "cosine":
        return CosineScheduler(start, end, tau, clip_min)
    elif scheduler_type == "linear":
        return LinearScheduler(clip_min=clip_min)
    else:
        raise ValueError(f"Scheduler type {scheduler_type} not supported")


class DinoV2FeatureExtractor:
    def __init__(self, device=device):
        super().__init__()
        self.device = device
        self.emb_model = torch.hub.load("facebookresearch/dinov2", "dinov2_vitl14_reg")
        self.emb_model.eval()
        self.emb_model.to(self.device)
        self.augmentation = transforms.Compose(
            [
                CenterCrop(ratio="1:1"),
                transforms.Resize(
                    336, interpolation=transforms.InterpolationMode.BICUBIC
                ),
                transforms.ToTensor(),
                transforms.Normalize(
                    mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
                ),
            ]
        )

    def __call__(self, batch):
        embs = []
        with torch.no_grad():
            for img in batch["img"]:
                emb = self.emb_model(
                    self.augmentation(img).unsqueeze(0).to(self.device)
                ).squeeze(0)
                embs.append(emb)
        batch["emb"] = torch.stack(embs)
        return batch


class StreetClipFeatureExtractor:
    def __init__(self, device=device):
        self.device = device
        self.emb_model = CLIPVisionModel.from_pretrained("geolocal/StreetCLIP").to(
            device
        )
        self.processor = CLIPProcessor.from_pretrained("geolocal/StreetCLIP")

    def __call__(self, batch):
        inputs = self.processor(images=batch["img"], return_tensors="pt")
        inputs = {k: v.to(self.device) for k, v in inputs.items()}
        with torch.no_grad():
            outputs = self.emb_model(**inputs)
        embeddings = outputs.last_hidden_state[:, 0]
        batch["emb"] = embeddings
        return batch


def load_prepocessing(model_name, dtype=torch.float32):
    if MODELS[model_name]["emb_name"] == "dinov2":
        return DinoV2FeatureExtractor()
    elif MODELS[model_name]["emb_name"] == "street_clip":
        return StreetClipFeatureExtractor()
    else:
        raise ValueError(f"Embedding model {MODELS[model_name]['emb_name']} not found")


# Helper functions adapted from plonk/models/module.py
# for likelihood computation
def div_fn(u):
    """Accepts a function u:R^D -> R^D."""
    J = jacrev(u, argnums=0)
    return lambda x, y: torch.trace(J(x, y).squeeze(0))


def output_and_div(vecfield, x, y, v=None):
    if v is None:
        dx = vecfield(x, y)
        div = vmap(div_fn(vecfield))(x, y)
    else:
        vecfield_x = lambda x: vecfield(x, y)
        dx, vjpfunc = vjp(vecfield_x, x)
        vJ = vjpfunc(v)[0]
        div = torch.sum(vJ * v, dim=-1)
    return dx, div


def _gps_degrees_to_cartesian(gps_coords_deg, device):
    """Converts GPS coordinates (latitude, longitude) in degrees to Cartesian coordinates."""
    if not isinstance(gps_coords_deg, np.ndarray):
        gps_coords_deg = np.array(gps_coords_deg)
    if gps_coords_deg.ndim == 1:
        gps_coords_deg = gps_coords_deg[np.newaxis, :]

    lat_rad = np.radians(gps_coords_deg[:, 0])
    lon_rad = np.radians(gps_coords_deg[:, 1])
    x = np.cos(lat_rad) * np.cos(lon_rad)
    y = np.cos(lat_rad) * np.sin(lon_rad)
    z = np.sin(lat_rad)
    cartesian_coords = np.stack([x, y, z], axis=-1)
    return torch.tensor(cartesian_coords, dtype=torch.float32, device=device)


class PlonkPipeline:
    """
    The PlonkPipeline class is designed to perform geolocation prediction from images using a pre-trained PLONK model.
    It integrates various components such as feature extractors, samplers, and coordinate transformations to predict locations.

    Initialization:
        PlonkPipeline(
            model_path,
            scheduler="sigmoid",
            scheduler_start=-7,
            scheduler_end=3,
            scheduler_tau=1.0,
            device="cuda",
        )

    Parameters:
        model_path (str): Path to the pre-trained PLONK model.
        scheduler (str): The scheduler type to use. Options are "sigmoid", "cosine", "linear". Default is "sigmoid".
        scheduler_start (float): Start value for the scheduler. Default is -7.
        scheduler_end (float): End value for the scheduler. Default is 3.
        scheduler_tau (float): Tau value for the scheduler. Default is 1.0.
        device (str): Device to run the model on. Default is "cuda".

    Methods:
        model(*args, **kwargs):
            Runs the preconditioning on the network with the provided arguments.

        __call__(...):
            Predicts geolocation coordinates from input images.

            Parameters:
                images: Input images to predict locations for.
                batch_size (int, optional): Batch size for processing.
                x_N (torch.Tensor, optional): Initial noise tensor. If not provided, it is generated.
                num_steps (int, optional): Number of steps for the sampler.
                scheduler (callable, optional): Custom scheduler function. If not provided, the default scheduler is used.
                cfg (float): Classifier-free guidance scale. Default is 0.
                generator (torch.Generator, optional): Random number generator.

            Returns:
                torch.Tensor: Predicted latitude and longitude coordinates.

        compute_likelihood(...):
            Computes the exact log-likelihood of observing the given coordinates for the given images.

            Parameters:
                images: Input images (PIL Image or list of PIL Images). Optional if emb is provided.
                coordinates: Target GPS coordinates (latitude, longitude) in degrees.
                emb: Pre-computed embeddings. If provided, images will be ignored.
                cfg (float): Classifier-free guidance scale. Default is 0 (no guidance).
                rademacher (bool): Whether to use Rademacher estimator for divergence. Default is False.
                atol (float): Absolute tolerance for ODE solver. Default is 1e-5.
                rtol (float): Relative tolerance for ODE solver. Default is 1e-5.
                normalize_logp (bool): Whether to normalize the log-likelihood by log(2) * dim. Default is True.

        compute_likelihood_grid(...):
            Computes the likelihood of an image over a global grid of coordinates.

            Parameters:
                image: Input PIL Image.
                grid_resolution_deg (float): The resolution of the grid in degrees. Default is 10 degrees.
                batch_size (int): How many grid points to process in each batch. Adjust based on available memory. Default is 1024.
                cfg (float): Classifier-free guidance scale passed to compute_likelihood. Default is 0.

            Returns:
                tuple: (latitude_grid, longitude_grid, likelihood_grid)
                    - latitude_grid (np.ndarray): 1D array of latitudes.
                    - longitude_grid (np.ndarray): 1D array of longitudes.
                    - likelihood_grid (np.ndarray): 2D array of log-likelihoods corresponding to the lat/lon grid.

        compute_localizability(...):
            Computes the localizability of an image. We use importance sampling by sampling by the model and not the grid to have a more accurate estimate.

            Parameters:
                image: Input PIL Image.
                atol (float): Absolute tolerance for ODE solver. Default is 1e-5.
                rtol (float): Relative tolerance for ODE solver. Default is 1e-5.
                number_monte_carlo_samples (int): How many samples to use for importance sampling. Default is 1024.

            Returns:
                torch.Tensor: Localizability of the image.

    Example Usage:
        pipe = PlonkPipeline(
            "path/to/plonk/model",
        )
        pipe.to("cuda")
        coordinates = pipe(
            images,
            batch_size=32
        )
        likelihood = pipe.compute_likelihood(
            images,
            coordinates,
            cfg=0,
            rademacher=False,
        )
        localizability = pipe.compute_localizability(
            image,
            number_monte_carlo_samples=1024,
        )
    """

    def __init__(
        self,
        model_path,
        scheduler="sigmoid",
        scheduler_start=-7,
        scheduler_end=3,
        scheduler_tau=1.0,
        device=device,
    ):
        self.network = Plonk.from_pretrained(model_path).to(device)
        self.network.requires_grad_(False).eval()
        assert scheduler in [
            "sigmoid",
            "cosine",
            "linear",
        ], f"Scheduler {scheduler} not supported"
        self.scheduler = scheduler_fn(
            scheduler, scheduler_start, scheduler_end, scheduler_tau
        )
        self.cond_preprocessing = load_prepocessing(model_name=model_path)
        self.postprocessing = CartesiantoGPS()
        self.sampler = riemannian_flow_sampler
        self.model_path = model_path
        self.preconditioning = DDPMPrecond()
        self.device = device
        # Add manifold
        self.manifold = Sphere()
        self.input_dim = 3  # Assuming 3D Cartesian coordinates for sphere

    def model(self, *args, **kwargs):
        return self.preconditioning(self.network, *args, **kwargs)

    def __call__(
        self,
        images,
        batch_size=None,
        x_N=None,
        num_steps=None,
        scheduler=None,
        cfg=0,
        generator=None,
    ):
        """Sample from the model given conditioning.

        Args:
            images: Conditioning input (image or list of images)
            batch_size: Number of samples to generate (inferred from cond if not provided)
            x_N: Initial noise tensor (generated if not provided)
            num_steps: Number of sampling steps (uses default if not provided)
            sampler: Custom sampler function (uses default if not provided)
            scheduler: Custom scheduler function (uses default if not provided)
            cfg: Classifier-free guidance scale (default 15)
            generator: Random number generator

        Returns:
            Sampled GPS coordinates after postprocessing
        """
        # Set up batch size and initial noise
        shape = [3]
        if not isinstance(images, list):
            images = [images]
        if x_N is None:
            if batch_size is None:
                if isinstance(images, list):
                    batch_size = len(images)
                else:
                    batch_size = 1
            x_N = torch.randn(
                batch_size, *shape, device=self.device, generator=generator
            )
        else:
            x_N = x_N.to(self.device)
            if x_N.ndim == 3:
                x_N = x_N.unsqueeze(0)
            batch_size = x_N.shape[0]

        # Set up batch with conditioning
        batch = {"y": x_N}
        batch["img"] = images
        batch = self.cond_preprocessing(batch)
        if len(images) > 1:
            assert len(images) == batch_size
        else:
            batch["emb"] = batch["emb"].repeat(batch_size, 1)

        # Use default sampler/scheduler if not provided
        sampler = self.sampler
        if scheduler is None:
            scheduler = self.scheduler
        # Sample from model
        if num_steps is None:
            output = sampler(
                self.model,
                batch,
                conditioning_keys="emb",
                scheduler=scheduler,
                cfg_rate=cfg,
                generator=generator,
            )
        else:
            output = sampler(
                self.model,
                batch,
                conditioning_keys="emb",
                scheduler=scheduler,
                num_steps=num_steps,
                cfg_rate=cfg,
                generator=generator,
            )

        # Apply postprocessing and return
        output = self.postprocessing(output)
        # To degrees
        output = np.degrees(output.detach().cpu().numpy())
        return output

    def compute_likelihood(
        self,
        images=None,
        coordinates=None,
        emb=None,
        cfg=0,
        rademacher=False,
        atol=1e-6,
        rtol=1e-6,
        normalize_logp=True,
    ):
        """
        Computes the exact log-likelihood of observing the given coordinates for the given images.

        Args:
            images: Input images (PIL Image or list of PIL Images). Optional if emb is provided.
            coordinates: Target GPS coordinates (latitude, longitude) in degrees.
                         Can be a list of pairs, numpy array (N, 2), or tensor (N, 2).
            emb: Pre-computed embeddings. If provided, images will be ignored.
            cfg (float): Classifier-free guidance scale. Default is 0 (no guidance).
            rademacher (bool): Whether to use Rademacher estimator for divergence. Default is False.
            atol (float): Absolute tolerance for ODE solver. Default is 1e-5.
            rtol (float): Relative tolerance for ODE solver. Default is 1e-5.
            normalize_logp (bool): Whether to normalize the log-likelihood by log(2) * dim. Default is True.
        Returns:
            torch.Tensor: Log-likelihood values for each input pair (image, coordinate).
        """
        nfe = [0]  # Counter for number of function evaluations

        # 1. Get embeddings either from images or directly from emb parameter
        if emb is not None:
            # Use provided embeddings directly
            if isinstance(emb, torch.Tensor):
                batch = {"emb": emb.to(self.device)}
            else:
                raise TypeError("emb must be a torch.Tensor")
        else:
            # Process images to get embeddings
            if not isinstance(images, list):
                images = [images]
            batch = {"img": images}
            batch = self.cond_preprocessing(batch)  # Adds 'emb' key

        # 2. Preprocess coordinates (GPS degrees -> Cartesian)
        x_1 = _gps_degrees_to_cartesian(coordinates, self.device)
        if x_1.shape[0] != batch["emb"].shape[0]:
            if x_1.shape[0] == 1:
                # Repeat coordinates if only one is provided for multiple images
                x_1 = x_1.repeat(batch["emb"].shape[0], 1)
            elif batch["emb"].shape[0] == 1:
                # Repeat embedding if only one image is provided for multiple coords
                batch["emb"] = batch["emb"].repeat(x_1.shape[0], 1)
            else:
                raise ValueError(
                    f"Batch size mismatch between images ({batch['emb'].shape[0]}) and coordinates ({x_1.shape[0]})"
                )

        # Ensure correct shapes for ODE solver
        if x_1.ndim == 1:
            x_1 = x_1.unsqueeze(0)
        if batch["emb"].ndim == 1:
            batch["emb"] = batch["emb"].unsqueeze(0)

        with torch.inference_mode(mode=False):  # Enable grads for jacobian calculation
            # Define the ODE function
            def odefunc(t, tensor):
                nfe[0] += 1
                t = t.to(tensor)
                gamma = self.scheduler(t)
                x = tensor[..., : self.input_dim]
                y = batch["emb"]  # Conditioning

                def vecfield(x_vf, y_vf):
                    batch_vecfield = {
                        "y": x_vf,
                        "emb": y_vf,
                        "gamma": gamma.reshape(-1),
                    }
                    if cfg > 0:
                        # Apply classifier-free guidance
                        batch_vecfield_uncond = {
                            "y": x_vf,
                            "emb": torch.zeros_like(y_vf),  # Null condition
                            "gamma": gamma.reshape(-1),
                        }
                        model_output_cond = self.model(batch_vecfield)
                        model_output_uncond = self.model(batch_vecfield_uncond)
                        model_output = model_output_cond + cfg * (
                            model_output_cond - model_output_uncond
                        )
                    else:
                        # Unconditional or naturally conditioned score
                        model_output = self.model(batch_vecfield)

                    # Assuming 'flow_matching' interpolant based on sampler used
                    d_gamma = self.scheduler.derivative(t).reshape(-1, 1)
                    return d_gamma * model_output

                if rademacher:
                    v = torch.randint_like(x, 2) * 2 - 1
                else:
                    v = None
                dx, div = output_and_div(vecfield, x, y, v=v)
                div = div.reshape(-1, 1)
                del t, x
                return torch.cat([dx, div], dim=-1)

            # 3. Solve the ODE
            state1 = torch.cat([x_1, torch.zeros_like(x_1[..., :1])], dim=-1)

            # Note: Using standard ODEINT here. For strict Riemannian integration,
            # a manifold-aware solver might be needed, but this follows the
            # structure from DiffGeolocalizer.compute_exact_loglikelihood more closely.
            with torch.no_grad():
                state0 = odeint(
                    odefunc,
                    state1,
                    t=torch.linspace(0, 1.0, 2).to(x_1.device),
                    atol=atol,
                    rtol=rtol,
                    method="dopri5",
                    options={"min_step": 1e-5},
                )[
                    -1
                ]  # Get the state at t=0

        x_0, logdetjac = state0[..., : self.input_dim], state0[..., -1]

        # Project final point onto the manifold (optional but good practice)
        x_0 = self.manifold.projx(x_0)

        # 4. Compute log probability
        # Log prob of base distribution (Gaussian projected onto sphere approx)
        logp0 = self.manifold.base_logprob(x_0)

        # Change of variables formula: log p(x_1) = log p(x_0) + log |det J|
        logp1 = logp0 + logdetjac

        # Optional: Normalize by log(2) * dim for bits per dimension
        if normalize_logp:
            logp1 = logp1 / (self.input_dim * np.log(2))

        print(f"Likelihood NFE: {nfe[0]}")  # Print number of function evaluations
        return logp1

    def compute_likelihood_grid(
        self,
        image,
        grid_resolution_deg=10,
        batch_size=1024,
        cfg=0,
    ):
        """
        Computes the likelihood of an image over a global grid of coordinates.

        Args:
            image: Input PIL Image.
            grid_resolution_deg (float): The resolution of the grid in degrees.
                                        Default is 10 degrees.
            batch_size (int): How many grid points to process in each batch.
                             Adjust based on available memory. Default is 1024.
            cfg (float): Classifier-free guidance scale passed to compute_likelihood.
                        Default is 0.

        Returns:
            tuple: (latitude_grid, longitude_grid, likelihood_grid)
                - latitude_grid (np.ndarray): 1D array of latitudes.
                - longitude_grid (np.ndarray): 1D array of longitudes.
                - likelihood_grid (np.ndarray): 2D array of log-likelihoods
                                                corresponding to the lat/lon grid.
        """
        # 1. Generate the grid
        latitudes = np.arange(-90, 90 + grid_resolution_deg, grid_resolution_deg)
        longitudes = np.arange(-180, 180 + grid_resolution_deg, grid_resolution_deg)
        lon_grid, lat_grid = np.meshgrid(longitudes, latitudes)

        # Flatten the grid for processing
        all_coordinates = np.vstack([lat_grid.ravel(), lon_grid.ravel()]).T
        num_points = all_coordinates.shape[0]
        print(
            f"Computing likelihood over a {latitudes.size}x{longitudes.size} grid ({num_points} points)..."
        )

        emb = self.cond_preprocessing({"img": [image]})["emb"]

        # 2. Process in batches
        all_likelihoods = []
        for i in tqdm(
            range(0, num_points, batch_size), desc="Computing Likelihood Grid"
        ):
            coord_batch = all_coordinates[i : i + batch_size]

            # Compute likelihood for the batch
            likelihood_batch = self.compute_likelihood(
                emb=emb,
                coordinates=coord_batch,
                cfg=cfg,
                rademacher=False,  # Using exact divergence is better for grid
            )
            all_likelihoods.append(likelihood_batch.detach().cpu().numpy())

        # 3. Combine and reshape results
        likelihood_flat = np.concatenate(all_likelihoods, axis=0)
        likelihood_grid = likelihood_flat.reshape(lat_grid.shape)

        # Return grid definition and likelihood values
        return latitudes, longitudes, likelihood_grid

    def compute_localizability(
        self,
        image,
        atol=1e-6,
        rtol=1e-6,
        number_monte_carlo_samples=1024,
    ):
        """
        Computes the localizability of an image. We use importance sampling by sampling by the model and not the grid to have a more accurate estimate.

        Args:
            image: Input PIL Image.
            atol (float): Absolute tolerance for ODE solver. Default is 1e-5.
            rtol (float): Relative tolerance for ODE solver. Default is 1e-5.
        """
        samples = self(image, batch_size=number_monte_carlo_samples)
        emb = self.cond_preprocessing({"img": [image]})["emb"]
        localizability = self.compute_likelihood(
            emb=emb,
            coordinates=samples,
            atol=atol,
            rtol=rtol,
            normalize_logp=False,
        )  # importance sampling of likelihood
        return localizability.mean() / (4 * torch.pi * np.log(2))

    def to(self, device):
        self.network.to(device)
        self.postprocessing.to(device)
        self.device = torch.device(device)
        return self