Spaces:
Runtime error
Runtime error
Commit
·
5eb92ed
1
Parent(s):
2b58889
Fix Gradio 5.x API endpoints - replace TabbedInterface with Blocks
Browse files
app.py
CHANGED
|
@@ -81,51 +81,79 @@ Mean Longitude: {mean_lon:.6f} ± {std_lon:.6f}
|
|
| 81 |
except Exception as e:
|
| 82 |
return f"Error during prediction: {str(e)}"
|
| 83 |
|
| 84 |
-
# Create the Gradio
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
outputs=gr.Textbox(label="Predicted Location", lines=4),
|
| 89 |
-
title="🗺️ PLONK: Global Visual Geolocation",
|
| 90 |
-
description="""
|
| 91 |
-
Upload an image and PLONK will predict where it was taken!
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
if __name__ == "__main__":
|
| 131 |
demo.launch()
|
|
|
|
| 81 |
except Exception as e:
|
| 82 |
return f"Error during prediction: {str(e)}"
|
| 83 |
|
| 84 |
+
# Create the Gradio app using Blocks for proper API support
|
| 85 |
+
with gr.Blocks(title="PLONK: Around the World in 80 Timesteps") as demo:
|
| 86 |
+
gr.Markdown("# 🗺️ PLONK: Around the World in 80 Timesteps")
|
| 87 |
+
gr.Markdown("A generative approach to global visual geolocation. Upload an image and PLONK will predict where it was taken!")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
with gr.Tabs():
|
| 90 |
+
with gr.TabItem("Simple Prediction"):
|
| 91 |
+
gr.Markdown("""
|
| 92 |
+
### 🗺️ PLONK: Global Visual Geolocation
|
| 93 |
+
|
| 94 |
+
Upload an image and PLONK will predict where it was taken!
|
| 95 |
+
|
| 96 |
+
This uses the PLONK_YFCC model trained on the YFCC100M dataset.
|
| 97 |
+
The model predicts latitude and longitude coordinates based on visual content.
|
| 98 |
+
|
| 99 |
+
**Note**: This is running on CPU, so processing may take 300-500ms per image.
|
| 100 |
+
""")
|
| 101 |
+
|
| 102 |
+
with gr.Row():
|
| 103 |
+
with gr.Column():
|
| 104 |
+
image_input = gr.Image(type="pil", label="Upload an image")
|
| 105 |
+
predict_btn = gr.Button("Predict Location", variant="primary")
|
| 106 |
+
|
| 107 |
+
with gr.Column():
|
| 108 |
+
output_text = gr.Textbox(label="Predicted Location", lines=4)
|
| 109 |
+
|
| 110 |
+
# Add examples if they exist
|
| 111 |
+
if any(Path("demo/examples").glob("*")):
|
| 112 |
+
gr.Examples(
|
| 113 |
+
examples=[
|
| 114 |
+
["demo/examples/condor.jpg"],
|
| 115 |
+
["demo/examples/Kilimanjaro.jpg"],
|
| 116 |
+
["demo/examples/pigeon.png"]
|
| 117 |
+
],
|
| 118 |
+
inputs=image_input,
|
| 119 |
+
outputs=output_text,
|
| 120 |
+
fn=predict_geolocation,
|
| 121 |
+
cache_examples=False
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
predict_btn.click(
|
| 125 |
+
fn=predict_geolocation,
|
| 126 |
+
inputs=image_input,
|
| 127 |
+
outputs=output_text,
|
| 128 |
+
api_name="predict" # This creates the /api/predict endpoint
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
with gr.TabItem("Advanced Analysis"):
|
| 132 |
+
gr.Markdown("""
|
| 133 |
+
### 🗺️ PLONK: Advanced Geolocation with Uncertainty
|
| 134 |
+
|
| 135 |
+
Advanced interface showing prediction uncertainty through multiple samples.
|
| 136 |
+
|
| 137 |
+
- **Number of samples**: More samples = better uncertainty estimation (but slower)
|
| 138 |
+
- **Guidance scale**: Higher values = more confident predictions (try 2.0 for best single guess)
|
| 139 |
+
""")
|
| 140 |
+
|
| 141 |
+
with gr.Row():
|
| 142 |
+
with gr.Column():
|
| 143 |
+
adv_image_input = gr.Image(type="pil", label="Upload an image")
|
| 144 |
+
samples_slider = gr.Slider(1, 256, value=64, step=1, label="Number of samples")
|
| 145 |
+
cfg_slider = gr.Slider(0.0, 5.0, value=0.0, step=0.1, label="Guidance scale (CFG)")
|
| 146 |
+
advanced_btn = gr.Button("Analyze with Uncertainty", variant="primary")
|
| 147 |
+
|
| 148 |
+
with gr.Column():
|
| 149 |
+
advanced_output = gr.Textbox(label="Detailed Results", lines=10)
|
| 150 |
+
|
| 151 |
+
advanced_btn.click(
|
| 152 |
+
fn=predict_geolocation_with_samples,
|
| 153 |
+
inputs=[adv_image_input, samples_slider, cfg_slider],
|
| 154 |
+
outputs=advanced_output,
|
| 155 |
+
api_name="predict_advanced" # This creates the /api/predict_advanced endpoint
|
| 156 |
+
)
|
| 157 |
|
| 158 |
if __name__ == "__main__":
|
| 159 |
demo.launch()
|