import gradio as gr import torch import torchvision.transforms as transforms from PIL import Image import base64 import io import os import numpy as np from pathlib import Path from plonk.pipe import PlonkPipeline import random # Global variable to store the model model = None # Real PLONK predictions for production deployment MOCK_MODE = False # Set to True for testing with mock data def load_plonk_model(): """ Load the PLONK model. """ global model if model is None: print("Loading PLONK_YFCC model...") model = PlonkPipeline(model_path="nicolas-dufour/PLONK_YFCC") print("Model loaded successfully!") return model def mock_plonk_prediction(): """ Mock PLONK prediction - returns realistic coordinates Used only when MOCK_MODE = True """ # Sample realistic coordinates from major cities/regions mock_locations = [ (40.7128, -74.0060), # New York (34.0522, -118.2437), # Los Angeles (51.5074, -0.1278), # London (48.8566, 2.3522), # Paris (35.6762, 139.6503), # Tokyo (37.7749, -122.4194), # San Francisco (41.8781, -87.6298), # Chicago (25.7617, -80.1918), # Miami (45.5017, -73.5673), # Montreal (52.5200, 13.4050), # Berlin (-33.8688, 151.2093), # Sydney (19.4326, -99.1332), # Mexico City ] # Add some randomness to make it more realistic base_lat, base_lon = random.choice(mock_locations) lat = base_lat + random.uniform(-2, 2) # Add noise within ~200km lon = base_lon + random.uniform(-2, 2) return lat, lon def real_plonk_prediction(image): """ Real PLONK prediction using the diff-plonk package Now generates 32 samples for better uncertainty estimation """ from plonk.pipe import PlonkPipeline import numpy as np # Load the model (do this once at startup, not per request) if not hasattr(gr, 'plonk_pipeline'): print("Loading PLONK model...") gr.plonk_pipeline = PlonkPipeline(model_path="nicolas-dufour/PLONK_YFCC") print("PLONK model loaded successfully!") # Get 32 predictions for uncertainty estimation predicted_gps = gr.plonk_pipeline(image, batch_size=32, cfg=2.0, num_steps=32) # Convert to numpy for easier processing predictions = predicted_gps.cpu().numpy() # Shape: (32, 2) # Calculate statistics mean_lat = float(np.mean(predictions[:, 0])) mean_lon = float(np.mean(predictions[:, 1])) std_lat = float(np.std(predictions[:, 0])) std_lon = float(np.std(predictions[:, 1])) # Calculate uncertainty radius (approximate) uncertainty_km = np.sqrt(std_lat**2 + std_lon**2) * 111.32 # Rough conversion to km return mean_lat, mean_lon, uncertainty_km, len(predictions) def predict_location(image): """ Main prediction function for Gradio interface """ try: if image is None: return "Please upload an image." # Ensure RGB format if image.mode != 'RGB': image = image.convert('RGB') # Get prediction (mock or real) if MOCK_MODE: lat, lon = mock_plonk_prediction() confidence = "mock" uncertainty_km = None num_samples = 1 note = " (Mock prediction for testing)" else: lat, lon, uncertainty_km, num_samples = real_plonk_prediction(image) confidence = "high" note = f" (Real PLONK prediction, {num_samples} samples)" # Format the result uncertainty_text = f"\n**Uncertainty:** Β±{uncertainty_km:.1f} km" if uncertainty_km is not None else "" result = f"""πŸ—ΊοΈ **Predicted Location**{note} **Latitude:** {lat:.6f} **Longitude:** {lon:.6f}{uncertainty_text} **Confidence:** {confidence} **Samples:** {num_samples} **Mode:** {'πŸ§ͺ Mock Testing' if MOCK_MODE else 'πŸš€ Production'} 🌍 *This prediction estimates where the image was taken based on visual content.* """ return result except Exception as e: return f"❌ Error processing image: {str(e)}" def predict_location_json(image): """ JSON API function for programmatic access Returns structured data instead of formatted text """ try: if image is None: return { "error": "No image provided", "status": "error" } # Ensure RGB format if image.mode != 'RGB': image = image.convert('RGB') # Get prediction (mock or real) if MOCK_MODE: lat, lon = mock_plonk_prediction() confidence = "mock" uncertainty_km = None num_samples = 1 else: lat, lon, uncertainty_km, num_samples = real_plonk_prediction(image) confidence = "high" result = { "status": "success", "mode": "mock" if MOCK_MODE else "production", "predicted_location": { "latitude": round(lat, 6), "longitude": round(lon, 6) }, "confidence": confidence, "samples": num_samples, "note": "This is a mock prediction for testing" if MOCK_MODE else f"Real PLONK prediction using {num_samples} samples" } # Add uncertainty info if available if uncertainty_km is not None: result["uncertainty_km"] = round(uncertainty_km, 1) return result except Exception as e: return { "error": str(e), "status": "error" } # Create the Gradio interface with gr.Blocks( theme=gr.themes.Soft(), title="πŸ—ΊοΈ PLONK: Around the World in 80 Timesteps" ) as demo: # Header gr.Markdown(""" # πŸ—ΊοΈ PLONK: Around the World in 80 Timesteps A generative approach to global visual geolocation. Upload an image and PLONK will predict where it was taken! This uses the PLONK model concept from the paper: *"Around the World in 80 Timesteps: A Generative Approach to Global Visual Geolocation"* **Current Mode:** {'πŸ§ͺ Mock Testing' if MOCK_MODE else 'πŸš€ Production'} - Real PLONK model predictions with 32 samples for uncertainty estimation. **Configuration:** Guidance Scale = 2.0, Samples = 32, Steps = 32 """) with gr.Tab("πŸ–ΌοΈ Image Upload"): with gr.Row(): with gr.Column(scale=1): image_input = gr.Image( label="Upload an image", type="pil", sources=["upload", "webcam", "clipboard"] ) predict_btn = gr.Button( "πŸ” Predict Location", variant="primary", size="lg" ) clear_btn = gr.ClearButton( components=[image_input], value="πŸ—‘οΈ Clear" ) with gr.Column(scale=1): output_text = gr.Markdown( label="Prediction Result", value="Upload an image and click 'Predict Location' to see results." ) with gr.Tab("πŸ“‘ API Information"): gr.Markdown(f""" ## πŸ”— API Access This Space provides both web interface and programmatic API access: ### **REST API Endpoint** ``` POST https://kylanoconnor-plonk-geolocation.hf.space/api/predict ``` ### **Python Example** ```python import requests # For API access response = requests.post( "https://kylanoconnor-plonk-geolocation.hf.space/api/predict", files={{"file": open("image.jpg", "rb")}} ) result = response.json() print(f"Location: {{result['data']['latitude']}}, {{result['data']['longitude']}}") ``` ### **cURL Example** ```bash curl -X POST \\ -F "data=@image.jpg" \\ "https://kylanoconnor-plonk-geolocation.hf.space/api/predict" ``` ### **Gradio Client (Python)** ```python from gradio_client import Client client = Client("kylanoconnor/plonk-geolocation") result = client.predict("path/to/image.jpg", api_name="/predict") print(result) ``` ### **JavaScript/Node.js** ```javascript const formData = new FormData(); formData.append('data', imageFile); const response = await fetch( 'https://kylanoconnor-plonk-geolocation.hf.space/api/predict', {{ method: 'POST', body: formData }} ); const result = await response.json(); console.log('Location:', result.data); ``` **Current Status:** {'πŸ§ͺ Mock Mode - Returns realistic test coordinates' if MOCK_MODE else 'πŸš€ Production Mode - Real PLONK predictions with 32 samples'} **Response Format:** - Latitude/Longitude coordinates - Uncertainty estimation (Β±km radius) - Number of samples used (32 for production) - Prediction confidence metrics **Rate Limits:** Standard Hugging Face Spaces limits apply **CORS:** Enabled for web integration """) with gr.Tab("ℹ️ About"): gr.Markdown(f""" ## About PLONK PLONK is a generative approach to global visual geolocation that uses diffusion models to predict where images were taken. **Paper:** [Around the World in 80 Timesteps: A Generative Approach to Global Visual Geolocation](https://arxiv.org/abs/2412.06781) **Authors:** Nicolas Dufour, David Picard, Vicky Kalogeiton, Loic Landrieu **Original Code:** https://github.com/nicolas-dufour/plonk ### Current Deployment - **Mode:** {'Mock Testing' if MOCK_MODE else 'Production'} - **Model:** {'Simulated predictions for API testing' if MOCK_MODE else 'Real PLONK model inference'} - **Response Format:** Structured JSON + formatted text - **API:** Fully functional REST endpoints ### Production Deployment This Space is running with the real PLONK model using: - **Model:** nicolas-dufour/PLONK_YFCC - **Dataset:** YFCC-100M - **Inference:** CFG=2.0, 32 samples, 32 timesteps for high quality predictions - **Uncertainty:** Statistical analysis across 32 predictions for reliability estimation ### Available Models - `nicolas-dufour/PLONK_YFCC` - YFCC-100M dataset - `nicolas-dufour/PLONK_iNaturalist` - iNaturalist dataset - `nicolas-dufour/PLONK_OSV_5M` - OpenStreetView-5M dataset """) # Event handlers predict_btn.click( fn=predict_location, inputs=[image_input], outputs=[output_text], api_name="predict" # This enables API access at /api/predict ) # Hidden API function for JSON responses predict_json = gr.Interface( fn=predict_location_json, inputs=gr.Image(type="pil"), outputs=gr.JSON(), api_name="predict_json" # Available at /api/predict_json ) # Add examples if available try: examples = [ ["demo/examples/condor.jpg"], ["demo/examples/Kilimanjaro.jpg"], ["demo/examples/pigeon.png"] ] gr.Examples( examples=examples, inputs=image_input, outputs=output_text, fn=predict_location, cache_examples=True ) except: pass # Examples not available, skip if __name__ == "__main__": # For local testing demo.launch( server_name="0.0.0.0", server_port=7860, show_api=True )