Spaces:
Runtime error
Runtime error
File size: 14,439 Bytes
deafbd7 ac8a35f deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e deafbd7 53b1f1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import mimetypes
import os
import re
import shutil
from typing import Optional
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
from smolagents.agents import ActionStep, MultiStepAgent
from smolagents.memory import MemoryStep
from smolagents.utils import _is_package_available
def pull_messages_from_step(step_log: MemoryStep):
"""
Extract ChatMessage objects from agent steps with proper nesting.
This is where we transform the agent's step-by-step reasoning,
tool calls, and logs into user-friendly gradio ChatMessage objects.
"""
import gradio as gr
if isinstance(step_log, ActionStep):
# Output the step number
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else ""
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**")
# First yield the thought/reasoning from the LLM
if hasattr(step_log, "model_output") and step_log.model_output is not None:
# Clean up the LLM output
model_output = step_log.model_output.strip()
# Remove any trailing <end_code> and extra backticks
model_output = re.sub(r"```\s*<end_code>", "```", model_output)
model_output = re.sub(r"<end_code>\s*```", "```", model_output)
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output)
model_output = model_output.strip()
yield gr.ChatMessage(role="assistant", content=model_output)
# For tool calls
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
first_tool_call = step_log.tool_calls[0]
used_code = first_tool_call.name == "python_interpreter"
parent_id = f"call_{len(step_log.tool_calls)}"
# Display the arguments used for the tool call
args = first_tool_call.arguments
if isinstance(args, dict):
content = str(args.get("answer", str(args)))
else:
content = str(args).strip()
if used_code:
# Clean up content by removing code blocks
content = re.sub(r"```.*?\n", "", content)
content = re.sub(r"\s*<end_code>\s*", "", content)
content = content.strip()
if not content.startswith("```python"):
content = f"```python\n{content}\n```"
parent_message_tool = gr.ChatMessage(
role="assistant",
content=content,
metadata={
"title": f"🛠️ Used tool {first_tool_call.name}",
"id": parent_id,
"status": "pending",
},
)
yield parent_message_tool
# Observations or logs from the tool call
if hasattr(step_log, "observations") and step_log.observations is not None and step_log.observations.strip():
log_content = step_log.observations.strip()
if log_content:
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
yield gr.ChatMessage(
role="assistant",
content=log_content,
metadata={
"title": "📝 Execution Logs",
"parent_id": parent_id,
"status": "done",
},
)
# Handle any errors
if hasattr(step_log, "error") and step_log.error is not None:
yield gr.ChatMessage(
role="assistant",
content=str(step_log.error),
metadata={"title": "💥 Error", "parent_id": parent_id, "status": "done"},
)
parent_message_tool.metadata["status"] = "done"
# Standalone errors
elif hasattr(step_log, "error") and step_log.error is not None:
yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"})
# Token counts, durations, etc.
step_footnote = f"{step_number}"
if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
token_str = (
f" | Input-tokens:{step_log.input_token_count:,} "
f"| Output-tokens:{step_log.output_token_count:,}"
)
step_footnote += token_str
if hasattr(step_log, "duration"):
step_duration = (
f" | Duration: {round(float(step_log.duration), 2)}"
if step_log.duration
else None
)
step_footnote += step_duration if step_duration else ""
step_footnote_html = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
yield gr.ChatMessage(role="assistant", content=f"{step_footnote_html}")
yield gr.ChatMessage(role="assistant", content="-----")
def stream_to_gradio(agent, task: str, reset_agent_memory: bool = False, additional_args: Optional[dict] = None):
"""
Runs an agent with the given task and streams the messages as gradio ChatMessages.
"""
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use Gradio: `pip install 'smolagents[gradio]'`"
)
import gradio as gr
total_input_tokens = 0
total_output_tokens = 0
# Run the agent in streaming mode
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
# If the model tracks token usage:
if hasattr(agent.model, "last_input_token_count"):
total_input_tokens += agent.model.last_input_token_count
total_output_tokens += agent.model.last_output_token_count
if isinstance(step_log, ActionStep):
step_log.input_token_count = agent.model.last_input_token_count
step_log.output_token_count = agent.model.last_output_token_count
# Convert each step into user-friendly messages
for message in pull_messages_from_step(step_log):
yield message
# The last step_log is presumably the final answer
final_answer = step_log
final_answer = handle_agent_output_types(final_answer)
# Convert the final_answer into a string for the user
final_answer_str = getattr(final_answer, "final_answer", "")
final_answer_str = f"\n{final_answer_str}\n"
# Yield one last message containing the final answer
yield gr.ChatMessage(role="assistant", content=final_answer_str)
return final_answer_str
class GradioUI:
"""
A one-line interface to launch your agent in Gradio.
Features:
- Chatbot panel for user messages and step-by-step agent reasoning
- 'Final Answer' section that clearly shows the final result
- (Optional) file upload for extra data the agent might use
"""
def __init__(self, agent: MultiStepAgent, file_upload_folder: Optional[str] = None):
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use Gradio: `pip install 'smolagents[gradio]'`"
)
self.agent = agent
self.file_upload_folder = file_upload_folder
if self.file_upload_folder is not None and not os.path.exists(file_upload_folder):
os.mkdir(file_upload_folder)
def interact_with_agent(self, prompt, messages, final_answer_state):
"""
This function is called whenever the user submits a new query.
We append the user's message to the chat, then stream the agent's steps
back to the chatbot widget, and finally store the final answer.
"""
import gradio as gr
# Add the user's new message to the conversation
messages.append(gr.ChatMessage(role="user", content=prompt))
yield messages, final_answer_state
# Stream out each step of the agent's process
for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
messages.append(msg)
yield messages, final_answer_state
# Update the final answer state once the agent is done
final_answer_state = msg.content if isinstance(msg, gr.ChatMessage) else ""
yield messages, final_answer_state
def upload_file(
self,
file,
file_uploads_log,
allowed_file_types=[
"application/pdf",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"text/plain",
],
):
"""
Handle file uploads, default allowed types are .pdf, .docx, and .txt
"""
import gradio as gr
if file is None:
return gr.Textbox("No file uploaded", visible=True), file_uploads_log
# Attempt to detect mime type
try:
mime_type, _ = mimetypes.guess_type(file.name)
except Exception as e:
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
# Check if file is allowed
if mime_type not in allowed_file_types:
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
# Sanitize and rename
original_name = os.path.basename(file.name)
sanitized_name = re.sub(r"[^\w\-.]", "_", original_name)
type_to_ext = {}
for ext, t in mimetypes.types_map.items():
if t not in type_to_ext:
type_to_ext[t] = ext
# Append the correct extension for the mime type
base_name = ".".join(sanitized_name.split(".")[:-1])
extension = type_to_ext.get(mime_type, "")
final_name = f"{base_name}{extension}".strip()
# Save the file
file_path = os.path.join(self.file_upload_folder, os.path.basename(final_name))
shutil.copy(file.name, file_path)
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
def log_user_message(self, text_input, file_uploads_log):
"""
Combines the user's text input with any file references.
We pass this along to the agent so it knows about available files.
"""
combined_input = text_input
if file_uploads_log:
combined_input += f"\nYou have been provided these files: {file_uploads_log}"
return combined_input, ""
def launch(self, **kwargs):
"""
Build and launch the Gradio Blocks interface with:
- A Markdown introduction
- A chat panel
- A file upload option (optional)
- A final answer panel
- Example usage instructions
"""
import gradio as gr
with gr.Blocks() as demo:
# Heading and instructions
gr.Markdown("""
# 😎 Pink Glasses Agent ☀️
A cheerful AI that filters out negativity and shares only uplifting, feel-good responses.
Ask anything — the agent thinks step by step and delivers a happy final answer. It can also fetch the latest news using the `fetch_news` tool powered by DuckDuckGo.
---
""")
with gr.Row():
with gr.Column():
stored_messages = gr.State([])
file_uploads_log = gr.State([])
final_answer_state = gr.State("")
chatbot = gr.Chatbot(
label="Pink Glasses Agent",
type="messages",
avatar_images=(None, "https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/Alfred.png"),
height=500,
)
# Optional file upload
if self.file_upload_folder is not None:
upload_file = gr.File(label="Upload a file")
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
upload_file.change(
self.upload_file,
[upload_file, file_uploads_log],
[upload_status, file_uploads_log],
)
text_input = gr.Textbox(lines=1, label="Your Input")
text_input.submit(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input],
).then(
self.interact_with_agent,
[stored_messages, chatbot, final_answer_state],
[chatbot, final_answer_state],
)
with gr.Column():
final_answer_display = gr.Markdown("## Final Answer")
final_answer_state.change(
lambda state: f"## Final Answer\n\n{state}",
inputs=final_answer_state,
outputs=final_answer_display,
)
gr.Markdown("""
---
# Example Usage
- **Ask about the latest news**:
> "What's going on in the world right now?"
- **Use Tools**:
The agent can fetch the latest news using DuckDuckGo.
""")
# Optional: share=True if you want a public link
demo.launch(debug=True, share=True, **kwargs)
|