|
import os |
|
import re |
|
import sys |
|
|
|
import torch |
|
|
|
from tools.i18n.i18n import I18nAuto |
|
|
|
i18n = I18nAuto(language=os.environ.get("language", "Auto")) |
|
|
|
|
|
pretrained_sovits_name = { |
|
"v1": "pretrained_models/s2G488k.pth", |
|
"v2": "pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", |
|
"v3": "pretrained_models/s2Gv3.pth", |
|
"v4": "pretrained_models/gsv-v4-pretrained/s2Gv4.pth", |
|
"v2Pro": "pretrained_models/v2Pro/s2Gv2Pro.pth", |
|
"v2ProPlus": "pretrained_models/Seia_e8_s240.pth", |
|
} |
|
|
|
pretrained_gpt_name = { |
|
"v1": "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", |
|
"v2": "pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", |
|
"v3": "pretrained_models/s1v3.ckpt", |
|
"v4": "pretrained_models/s1v3.ckpt", |
|
"v2Pro": "pretrained_models/s1v3.ckpt", |
|
"v2ProPlus": "pretrained_models/Seia-e15.ckpt", |
|
} |
|
name2sovits_path = { |
|
|
|
|
|
|
|
|
|
|
|
|
|
i18n("百合园圣亚v2ProPlus.pth"): "pretrained_models/Seia_e8_s240.pth", |
|
} |
|
name2gpt_path = { |
|
|
|
|
|
|
|
|
|
|
|
i18n("百合园圣亚v2ProPlus.ckpt"): "pretrained_models/Seia-e15.ckpt", |
|
} |
|
SoVITS_weight_root = [ |
|
"SoVITS_weights", |
|
"SoVITS_weights_v2", |
|
"SoVITS_weights_v3", |
|
"SoVITS_weights_v4", |
|
"SoVITS_weights_v2Pro", |
|
"SoVITS_weights_v2ProPlus", |
|
] |
|
GPT_weight_root = [ |
|
"GPT_weights", |
|
"GPT_weights_v2", |
|
"GPT_weights_v3", |
|
"GPT_weights_v4", |
|
"GPT_weights_v2Pro", |
|
"GPT_weights_v2ProPlus", |
|
] |
|
SoVITS_weight_version2root = { |
|
"v1": "SoVITS_weights", |
|
"v2": "SoVITS_weights_v2", |
|
"v3": "SoVITS_weights_v3", |
|
"v4": "SoVITS_weights_v4", |
|
"v2Pro": "SoVITS_weights_v2Pro", |
|
"v2ProPlus": "SoVITS_weights_v2ProPlus", |
|
} |
|
GPT_weight_version2root = { |
|
"v1": "GPT_weights", |
|
"v2": "GPT_weights_v2", |
|
"v3": "GPT_weights_v3", |
|
"v4": "GPT_weights_v4", |
|
"v2Pro": "GPT_weights_v2Pro", |
|
"v2ProPlus": "GPT_weights_v2ProPlus", |
|
} |
|
|
|
def custom_sort_key(s): |
|
|
|
parts = re.split("(\d+)", s) |
|
|
|
parts = [int(part) if part.isdigit() else part for part in parts] |
|
return parts |
|
|
|
|
|
def get_weights_names(): |
|
SoVITS_names = [] |
|
for key in name2sovits_path: |
|
if os.path.exists(name2sovits_path[key]): |
|
SoVITS_names.append(key) |
|
for path in SoVITS_weight_root: |
|
if not os.path.exists(path): |
|
continue |
|
for name in os.listdir(path): |
|
if name.endswith(".pth"): |
|
SoVITS_names.append("%s/%s" % (path, name)) |
|
if not SoVITS_names: |
|
SoVITS_names = [""] |
|
GPT_names = [] |
|
for key in name2gpt_path: |
|
if os.path.exists(name2gpt_path[key]): |
|
GPT_names.append(key) |
|
for path in GPT_weight_root: |
|
if not os.path.exists(path): |
|
continue |
|
for name in os.listdir(path): |
|
if name.endswith(".ckpt"): |
|
GPT_names.append("%s/%s" % (path, name)) |
|
SoVITS_names = sorted(SoVITS_names, key=custom_sort_key) |
|
GPT_names = sorted(GPT_names, key=custom_sort_key) |
|
if not GPT_names: |
|
GPT_names = [""] |
|
return SoVITS_names, GPT_names |
|
|
|
def change_choices(): |
|
SoVITS_names, GPT_names = get_weights_names() |
|
return {"choices": SoVITS_names, "__type__": "update"}, { |
|
"choices": GPT_names, |
|
"__type__": "update", |
|
} |
|
|
|
|
|
|
|
sovits_path = "" |
|
gpt_path = "" |
|
is_half_str = os.environ.get("is_half", "True") |
|
is_half = True if is_half_str.lower() == "true" else False |
|
is_share_str = os.environ.get("is_share", "False") |
|
is_share = True if is_share_str.lower() == "true" else False |
|
|
|
cnhubert_path = "pretrained_models/chinese-hubert-base" |
|
bert_path = "pretrained_models/chinese-roberta-wwm-ext-large" |
|
pretrained_sovits_path = "pretrained_models/s2G488k.pth" |
|
pretrained_gpt_path = "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" |
|
|
|
exp_root = "logs" |
|
python_exec = sys.executable or "python" |
|
|
|
webui_port_main = 9874 |
|
webui_port_uvr5 = 9873 |
|
webui_port_infer_tts = 9872 |
|
webui_port_subfix = 9871 |
|
|
|
api_port = 9880 |
|
|
|
|
|
|
|
def get_device_dtype_sm(idx: int) -> tuple[torch.device, torch.dtype, float, float]: |
|
cpu = torch.device("cpu") |
|
cuda = torch.device(f"cuda:{idx}") |
|
if not torch.cuda.is_available(): |
|
return cpu, torch.float32, 0.0, 0.0 |
|
device_idx = idx |
|
capability = torch.cuda.get_device_capability(device_idx) |
|
name = torch.cuda.get_device_name(device_idx) |
|
mem_bytes = torch.cuda.get_device_properties(device_idx).total_memory |
|
mem_gb = mem_bytes / (1024**3) + 0.4 |
|
major, minor = capability |
|
sm_version = major + minor / 10.0 |
|
is_16_series = bool(re.search(r"16\d{2}", name)) and sm_version == 7.5 |
|
if mem_gb < 4 or sm_version < 5.3: |
|
return cpu, torch.float32, 0.0, 0.0 |
|
if sm_version == 6.1 or is_16_series == True: |
|
return cuda, torch.float32, sm_version, mem_gb |
|
if sm_version > 6.1: |
|
return cuda, torch.float16, sm_version, mem_gb |
|
return cpu, torch.float32, 0.0, 0.0 |
|
|
|
|
|
IS_GPU = True |
|
GPU_INFOS: list[str] = [] |
|
GPU_INDEX: set[int] = set() |
|
GPU_COUNT = torch.cuda.device_count() |
|
CPU_INFO: str = "0\tCPU " + i18n("CPU训练,较慢") |
|
tmp: list[tuple[torch.device, torch.dtype, float, float]] = [] |
|
memset: set[float] = set() |
|
|
|
for i in range(max(GPU_COUNT, 1)): |
|
tmp.append(get_device_dtype_sm(i)) |
|
|
|
for j in tmp: |
|
device = j[0] |
|
memset.add(j[3]) |
|
if device.type != "cpu": |
|
GPU_INFOS.append(f"{device.index}\t{torch.cuda.get_device_name(device.index)}") |
|
GPU_INDEX.add(device.index) |
|
|
|
if not GPU_INFOS: |
|
IS_GPU = False |
|
GPU_INFOS.append(CPU_INFO) |
|
GPU_INDEX.add(0) |
|
|
|
infer_device = max(tmp, key=lambda x: (x[2], x[3]))[0] |
|
is_half = any(dtype == torch.float16 for _, dtype, _, _ in tmp) |
|
|
|
|
|
class Config: |
|
def __init__(self): |
|
self.sovits_path = sovits_path |
|
self.gpt_path = gpt_path |
|
self.is_half = is_half |
|
|
|
self.cnhubert_path = cnhubert_path |
|
self.bert_path = bert_path |
|
self.pretrained_sovits_path = pretrained_sovits_path |
|
self.pretrained_gpt_path = pretrained_gpt_path |
|
|
|
self.exp_root = exp_root |
|
self.python_exec = python_exec |
|
self.infer_device = infer_device |
|
|
|
self.webui_port_main = webui_port_main |
|
self.webui_port_uvr5 = webui_port_uvr5 |
|
self.webui_port_infer_tts = webui_port_infer_tts |
|
self.webui_port_subfix = webui_port_subfix |
|
|
|
self.api_port = api_port |
|
|