Update config.py
Browse files
config.py
CHANGED
@@ -1,218 +1,218 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import sys
|
4 |
-
|
5 |
-
import torch
|
6 |
-
|
7 |
-
from tools.i18n.i18n import I18nAuto
|
8 |
-
|
9 |
-
i18n = I18nAuto(language=os.environ.get("language", "Auto"))
|
10 |
-
|
11 |
-
|
12 |
-
pretrained_sovits_name = {
|
13 |
-
"v1": "pretrained_models/s2G488k.pth",
|
14 |
-
"v2": "pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
|
15 |
-
"v3": "pretrained_models/s2Gv3.pth", ###v3v4还要检查vocoder,算了。。。
|
16 |
-
"v4": "pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
|
17 |
-
"v2Pro": "pretrained_models/v2Pro/s2Gv2Pro.pth",
|
18 |
-
"v2ProPlus": "pretrained_models/v2Pro/s2Gv2ProPlus.pth",
|
19 |
-
}
|
20 |
-
|
21 |
-
pretrained_gpt_name = {
|
22 |
-
"v1": "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
23 |
-
"v2": "pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
24 |
-
"v3": "pretrained_models/s1v3.ckpt",
|
25 |
-
"v4": "pretrained_models/s1v3.ckpt",
|
26 |
-
"v2Pro": "pretrained_models/s1v3.ckpt",
|
27 |
-
"v2ProPlus": "pretrained_models/s1v3.ckpt",
|
28 |
-
}
|
29 |
-
name2sovits_path = {
|
30 |
-
# i18n("不训练直接推v1底模!"): "pretrained_models/s2G488k.pth",
|
31 |
-
i18n("不训练直接推v2底模!"): "pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
|
32 |
-
# i18n("不训练直接推v3底模!"): "pretrained_models/s2Gv3.pth",
|
33 |
-
# i18n("不训练直接推v4底模!"): "pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
|
34 |
-
i18n("不训练直接推v2Pro底模!"): "pretrained_models/v2Pro/s2Gv2Pro.pth",
|
35 |
-
i18n("不训练直接推v2ProPlus底模!"): "pretrained_models/v2Pro/s2Gv2ProPlus.pth",
|
36 |
-
}
|
37 |
-
name2gpt_path = {
|
38 |
-
# i18n("不训练直接推v1底模!"):"pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
39 |
-
i18n(
|
40 |
-
|
41 |
-
): "pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
42 |
-
i18n("不训练直接推v3底模!"): "pretrained_models/s1v3.ckpt",
|
43 |
-
}
|
44 |
-
SoVITS_weight_root = [
|
45 |
-
"SoVITS_weights",
|
46 |
-
"SoVITS_weights_v2",
|
47 |
-
"SoVITS_weights_v3",
|
48 |
-
"SoVITS_weights_v4",
|
49 |
-
"SoVITS_weights_v2Pro",
|
50 |
-
"SoVITS_weights_v2ProPlus",
|
51 |
-
]
|
52 |
-
GPT_weight_root = [
|
53 |
-
"GPT_weights",
|
54 |
-
"GPT_weights_v2",
|
55 |
-
"GPT_weights_v3",
|
56 |
-
"GPT_weights_v4",
|
57 |
-
"GPT_weights_v2Pro",
|
58 |
-
"GPT_weights_v2ProPlus",
|
59 |
-
]
|
60 |
-
SoVITS_weight_version2root = {
|
61 |
-
"v1": "SoVITS_weights",
|
62 |
-
"v2": "SoVITS_weights_v2",
|
63 |
-
"v3": "SoVITS_weights_v3",
|
64 |
-
"v4": "SoVITS_weights_v4",
|
65 |
-
"v2Pro": "SoVITS_weights_v2Pro",
|
66 |
-
"v2ProPlus": "SoVITS_weights_v2ProPlus",
|
67 |
-
}
|
68 |
-
GPT_weight_version2root = {
|
69 |
-
"v1": "GPT_weights",
|
70 |
-
"v2": "GPT_weights_v2",
|
71 |
-
"v3": "GPT_weights_v3",
|
72 |
-
"v4": "GPT_weights_v4",
|
73 |
-
"v2Pro": "GPT_weights_v2Pro",
|
74 |
-
"v2ProPlus": "GPT_weights_v2ProPlus",
|
75 |
-
}
|
76 |
-
|
77 |
-
|
78 |
-
def custom_sort_key(s):
|
79 |
-
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
80 |
-
parts = re.split("(\d+)", s)
|
81 |
-
# 将数字部分转换为整数,非数字部分保持不变
|
82 |
-
parts = [int(part) if part.isdigit() else part for part in parts]
|
83 |
-
return parts
|
84 |
-
|
85 |
-
|
86 |
-
def get_weights_names():
|
87 |
-
SoVITS_names = []
|
88 |
-
for key in name2sovits_path:
|
89 |
-
if os.path.exists(name2sovits_path[key]):
|
90 |
-
SoVITS_names.append(key)
|
91 |
-
for path in SoVITS_weight_root:
|
92 |
-
if not os.path.exists(path):
|
93 |
-
continue
|
94 |
-
for name in os.listdir(path):
|
95 |
-
if name.endswith(".pth"):
|
96 |
-
SoVITS_names.append("%s/%s" % (path, name))
|
97 |
-
if not SoVITS_names:
|
98 |
-
SoVITS_names = [""]
|
99 |
-
GPT_names = []
|
100 |
-
for key in name2gpt_path:
|
101 |
-
if os.path.exists(name2gpt_path[key]):
|
102 |
-
GPT_names.append(key)
|
103 |
-
for path in GPT_weight_root:
|
104 |
-
if not os.path.exists(path):
|
105 |
-
continue
|
106 |
-
for name in os.listdir(path):
|
107 |
-
if name.endswith(".ckpt"):
|
108 |
-
GPT_names.append("%s/%s" % (path, name))
|
109 |
-
SoVITS_names = sorted(SoVITS_names, key=custom_sort_key)
|
110 |
-
GPT_names = sorted(GPT_names, key=custom_sort_key)
|
111 |
-
if not GPT_names:
|
112 |
-
GPT_names = [""]
|
113 |
-
return SoVITS_names, GPT_names
|
114 |
-
|
115 |
-
|
116 |
-
def change_choices():
|
117 |
-
SoVITS_names, GPT_names = get_weights_names()
|
118 |
-
return {"choices": SoVITS_names, "__type__": "update"}, {
|
119 |
-
"choices": GPT_names,
|
120 |
-
"__type__": "update",
|
121 |
-
}
|
122 |
-
|
123 |
-
|
124 |
-
# 推理用的指定模型
|
125 |
-
sovits_path = ""
|
126 |
-
gpt_path = ""
|
127 |
-
is_half_str = os.environ.get("is_half", "True")
|
128 |
-
is_half = True if is_half_str.lower() == "true" else False
|
129 |
-
is_share_str = os.environ.get("is_share", "False")
|
130 |
-
is_share = True if is_share_str.lower() == "true" else False
|
131 |
-
|
132 |
-
cnhubert_path = "pretrained_models/chinese-hubert-base"
|
133 |
-
bert_path = "pretrained_models/chinese-roberta-wwm-ext-large"
|
134 |
-
pretrained_sovits_path = "pretrained_models/s2G488k.pth"
|
135 |
-
pretrained_gpt_path = "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
136 |
-
|
137 |
-
exp_root = "logs"
|
138 |
-
python_exec = sys.executable or "python"
|
139 |
-
|
140 |
-
webui_port_main = 9874
|
141 |
-
webui_port_uvr5 = 9873
|
142 |
-
webui_port_infer_tts = 9872
|
143 |
-
webui_port_subfix = 9871
|
144 |
-
|
145 |
-
api_port = 9880
|
146 |
-
|
147 |
-
|
148 |
-
# Thanks to the contribution of @Karasukaigan and @XXXXRT666
|
149 |
-
def get_device_dtype_sm(idx: int) -> tuple[torch.device, torch.dtype, float, float]:
|
150 |
-
cpu = torch.device("cpu")
|
151 |
-
cuda = torch.device(f"cuda:{idx}")
|
152 |
-
if not torch.cuda.is_available():
|
153 |
-
return cpu, torch.float32, 0.0, 0.0
|
154 |
-
device_idx = idx
|
155 |
-
capability = torch.cuda.get_device_capability(device_idx)
|
156 |
-
name = torch.cuda.get_device_name(device_idx)
|
157 |
-
mem_bytes = torch.cuda.get_device_properties(device_idx).total_memory
|
158 |
-
mem_gb = mem_bytes / (1024**3) + 0.4
|
159 |
-
major, minor = capability
|
160 |
-
sm_version = major + minor / 10.0
|
161 |
-
is_16_series = bool(re.search(r"16\d{2}", name)) and sm_version == 7.5
|
162 |
-
if mem_gb < 4 or sm_version < 5.3:
|
163 |
-
return cpu, torch.float32, 0.0, 0.0
|
164 |
-
if sm_version == 6.1 or is_16_series == True:
|
165 |
-
return cuda, torch.float32, sm_version, mem_gb
|
166 |
-
if sm_version > 6.1:
|
167 |
-
return cuda, torch.float16, sm_version, mem_gb
|
168 |
-
return cpu, torch.float32, 0.0, 0.0
|
169 |
-
|
170 |
-
|
171 |
-
IS_GPU = True
|
172 |
-
GPU_INFOS: list[str] = []
|
173 |
-
GPU_INDEX: set[int] = set()
|
174 |
-
GPU_COUNT = torch.cuda.device_count()
|
175 |
-
CPU_INFO: str = "0\tCPU " + i18n("CPU训练,较慢")
|
176 |
-
tmp: list[tuple[torch.device, torch.dtype, float, float]] = []
|
177 |
-
memset: set[float] = set()
|
178 |
-
|
179 |
-
for i in range(max(GPU_COUNT, 1)):
|
180 |
-
tmp.append(get_device_dtype_sm(i))
|
181 |
-
|
182 |
-
for j in tmp:
|
183 |
-
device = j[0]
|
184 |
-
memset.add(j[3])
|
185 |
-
if device.type != "cpu":
|
186 |
-
GPU_INFOS.append(f"{device.index}\t{torch.cuda.get_device_name(device.index)}")
|
187 |
-
GPU_INDEX.add(device.index)
|
188 |
-
|
189 |
-
if not GPU_INFOS:
|
190 |
-
IS_GPU = False
|
191 |
-
GPU_INFOS.append(CPU_INFO)
|
192 |
-
GPU_INDEX.add(0)
|
193 |
-
|
194 |
-
infer_device = max(tmp, key=lambda x: (x[2], x[3]))[0]
|
195 |
-
is_half = any(dtype == torch.float16 for _, dtype, _, _ in tmp)
|
196 |
-
|
197 |
-
|
198 |
-
class Config:
|
199 |
-
def __init__(self):
|
200 |
-
self.sovits_path = sovits_path
|
201 |
-
self.gpt_path = gpt_path
|
202 |
-
self.is_half = is_half
|
203 |
-
|
204 |
-
self.cnhubert_path = cnhubert_path
|
205 |
-
self.bert_path = bert_path
|
206 |
-
self.pretrained_sovits_path = pretrained_sovits_path
|
207 |
-
self.pretrained_gpt_path = pretrained_gpt_path
|
208 |
-
|
209 |
-
self.exp_root = exp_root
|
210 |
-
self.python_exec = python_exec
|
211 |
-
self.infer_device = infer_device
|
212 |
-
|
213 |
-
self.webui_port_main = webui_port_main
|
214 |
-
self.webui_port_uvr5 = webui_port_uvr5
|
215 |
-
self.webui_port_infer_tts = webui_port_infer_tts
|
216 |
-
self.webui_port_subfix = webui_port_subfix
|
217 |
-
|
218 |
-
self.api_port = api_port
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import sys
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from tools.i18n.i18n import I18nAuto
|
8 |
+
|
9 |
+
i18n = I18nAuto(language=os.environ.get("language", "Auto"))
|
10 |
+
|
11 |
+
|
12 |
+
pretrained_sovits_name = {
|
13 |
+
"v1": "pretrained_models/s2G488k.pth",
|
14 |
+
"v2": "pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
|
15 |
+
"v3": "pretrained_models/s2Gv3.pth", ###v3v4还要检查vocoder,算了。。。
|
16 |
+
"v4": "pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
|
17 |
+
"v2Pro": "pretrained_models/v2Pro/s2Gv2Pro.pth",
|
18 |
+
"v2ProPlus": "pretrained_models/v2Pro/s2Gv2ProPlus.pth",
|
19 |
+
}
|
20 |
+
|
21 |
+
pretrained_gpt_name = {
|
22 |
+
"v1": "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
23 |
+
"v2": "pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
24 |
+
"v3": "pretrained_models/s1v3.ckpt",
|
25 |
+
"v4": "pretrained_models/s1v3.ckpt",
|
26 |
+
"v2Pro": "pretrained_models/s1v3.ckpt",
|
27 |
+
"v2ProPlus": "pretrained_models/s1v3.ckpt",
|
28 |
+
}
|
29 |
+
name2sovits_path = {
|
30 |
+
# i18n("不训练直接推v1底模!"): "pretrained_models/s2G488k.pth",
|
31 |
+
# i18n("不训练直接推v2底模!"): "pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
|
32 |
+
# i18n("不训练直接推v3底模!"): "pretrained_models/s2Gv3.pth",
|
33 |
+
# i18n("不训练直接推v4底模!"): "pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
|
34 |
+
# i18n("不训练直接推v2Pro底模!"): "pretrained_models/v2Pro/s2Gv2Pro.pth",
|
35 |
+
# i18n("不训练直接推v2ProPlus底模!"): "pretrained_models/v2Pro/s2Gv2ProPlus.pth",
|
36 |
+
}
|
37 |
+
name2gpt_path = {
|
38 |
+
# i18n("不训练直接推v1底模!"):"pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
39 |
+
# i18n(
|
40 |
+
# "不训练直接推v2底模!"
|
41 |
+
# ): "pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
42 |
+
# i18n("不训练直接推v3底模!"): "pretrained_models/s1v3.ckpt",
|
43 |
+
}
|
44 |
+
SoVITS_weight_root = [
|
45 |
+
"SoVITS_weights",
|
46 |
+
"SoVITS_weights_v2",
|
47 |
+
"SoVITS_weights_v3",
|
48 |
+
"SoVITS_weights_v4",
|
49 |
+
"SoVITS_weights_v2Pro",
|
50 |
+
"SoVITS_weights_v2ProPlus",
|
51 |
+
]
|
52 |
+
GPT_weight_root = [
|
53 |
+
"GPT_weights",
|
54 |
+
"GPT_weights_v2",
|
55 |
+
"GPT_weights_v3",
|
56 |
+
"GPT_weights_v4",
|
57 |
+
"GPT_weights_v2Pro",
|
58 |
+
"GPT_weights_v2ProPlus",
|
59 |
+
]
|
60 |
+
SoVITS_weight_version2root = {
|
61 |
+
"v1": "SoVITS_weights",
|
62 |
+
"v2": "SoVITS_weights_v2",
|
63 |
+
"v3": "SoVITS_weights_v3",
|
64 |
+
"v4": "SoVITS_weights_v4",
|
65 |
+
"v2Pro": "SoVITS_weights_v2Pro",
|
66 |
+
"v2ProPlus": "SoVITS_weights_v2ProPlus",
|
67 |
+
}
|
68 |
+
GPT_weight_version2root = {
|
69 |
+
"v1": "GPT_weights",
|
70 |
+
"v2": "GPT_weights_v2",
|
71 |
+
"v3": "GPT_weights_v3",
|
72 |
+
"v4": "GPT_weights_v4",
|
73 |
+
"v2Pro": "GPT_weights_v2Pro",
|
74 |
+
"v2ProPlus": "GPT_weights_v2ProPlus",
|
75 |
+
}
|
76 |
+
|
77 |
+
|
78 |
+
def custom_sort_key(s):
|
79 |
+
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
80 |
+
parts = re.split("(\d+)", s)
|
81 |
+
# 将数字部分转换为整数,非数字部分保持不变
|
82 |
+
parts = [int(part) if part.isdigit() else part for part in parts]
|
83 |
+
return parts
|
84 |
+
|
85 |
+
|
86 |
+
def get_weights_names():
|
87 |
+
SoVITS_names = []
|
88 |
+
for key in name2sovits_path:
|
89 |
+
if os.path.exists(name2sovits_path[key]):
|
90 |
+
SoVITS_names.append(key)
|
91 |
+
for path in SoVITS_weight_root:
|
92 |
+
if not os.path.exists(path):
|
93 |
+
continue
|
94 |
+
for name in os.listdir(path):
|
95 |
+
if name.endswith(".pth"):
|
96 |
+
SoVITS_names.append("%s/%s" % (path, name))
|
97 |
+
if not SoVITS_names:
|
98 |
+
SoVITS_names = [""]
|
99 |
+
GPT_names = []
|
100 |
+
for key in name2gpt_path:
|
101 |
+
if os.path.exists(name2gpt_path[key]):
|
102 |
+
GPT_names.append(key)
|
103 |
+
for path in GPT_weight_root:
|
104 |
+
if not os.path.exists(path):
|
105 |
+
continue
|
106 |
+
for name in os.listdir(path):
|
107 |
+
if name.endswith(".ckpt"):
|
108 |
+
GPT_names.append("%s/%s" % (path, name))
|
109 |
+
SoVITS_names = sorted(SoVITS_names, key=custom_sort_key)
|
110 |
+
GPT_names = sorted(GPT_names, key=custom_sort_key)
|
111 |
+
if not GPT_names:
|
112 |
+
GPT_names = [""]
|
113 |
+
return SoVITS_names, GPT_names
|
114 |
+
|
115 |
+
|
116 |
+
def change_choices():
|
117 |
+
SoVITS_names, GPT_names = get_weights_names()
|
118 |
+
return {"choices": SoVITS_names, "__type__": "update"}, {
|
119 |
+
"choices": GPT_names,
|
120 |
+
"__type__": "update",
|
121 |
+
}
|
122 |
+
|
123 |
+
|
124 |
+
# 推理用的指定模型
|
125 |
+
sovits_path = ""
|
126 |
+
gpt_path = ""
|
127 |
+
is_half_str = os.environ.get("is_half", "True")
|
128 |
+
is_half = True if is_half_str.lower() == "true" else False
|
129 |
+
is_share_str = os.environ.get("is_share", "False")
|
130 |
+
is_share = True if is_share_str.lower() == "true" else False
|
131 |
+
|
132 |
+
cnhubert_path = "pretrained_models/chinese-hubert-base"
|
133 |
+
bert_path = "pretrained_models/chinese-roberta-wwm-ext-large"
|
134 |
+
pretrained_sovits_path = "pretrained_models/s2G488k.pth"
|
135 |
+
pretrained_gpt_path = "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
136 |
+
|
137 |
+
exp_root = "logs"
|
138 |
+
python_exec = sys.executable or "python"
|
139 |
+
|
140 |
+
webui_port_main = 9874
|
141 |
+
webui_port_uvr5 = 9873
|
142 |
+
webui_port_infer_tts = 9872
|
143 |
+
webui_port_subfix = 9871
|
144 |
+
|
145 |
+
api_port = 9880
|
146 |
+
|
147 |
+
|
148 |
+
# Thanks to the contribution of @Karasukaigan and @XXXXRT666
|
149 |
+
def get_device_dtype_sm(idx: int) -> tuple[torch.device, torch.dtype, float, float]:
|
150 |
+
cpu = torch.device("cpu")
|
151 |
+
cuda = torch.device(f"cuda:{idx}")
|
152 |
+
if not torch.cuda.is_available():
|
153 |
+
return cpu, torch.float32, 0.0, 0.0
|
154 |
+
device_idx = idx
|
155 |
+
capability = torch.cuda.get_device_capability(device_idx)
|
156 |
+
name = torch.cuda.get_device_name(device_idx)
|
157 |
+
mem_bytes = torch.cuda.get_device_properties(device_idx).total_memory
|
158 |
+
mem_gb = mem_bytes / (1024**3) + 0.4
|
159 |
+
major, minor = capability
|
160 |
+
sm_version = major + minor / 10.0
|
161 |
+
is_16_series = bool(re.search(r"16\d{2}", name)) and sm_version == 7.5
|
162 |
+
if mem_gb < 4 or sm_version < 5.3:
|
163 |
+
return cpu, torch.float32, 0.0, 0.0
|
164 |
+
if sm_version == 6.1 or is_16_series == True:
|
165 |
+
return cuda, torch.float32, sm_version, mem_gb
|
166 |
+
if sm_version > 6.1:
|
167 |
+
return cuda, torch.float16, sm_version, mem_gb
|
168 |
+
return cpu, torch.float32, 0.0, 0.0
|
169 |
+
|
170 |
+
|
171 |
+
IS_GPU = True
|
172 |
+
GPU_INFOS: list[str] = []
|
173 |
+
GPU_INDEX: set[int] = set()
|
174 |
+
GPU_COUNT = torch.cuda.device_count()
|
175 |
+
CPU_INFO: str = "0\tCPU " + i18n("CPU训练,较慢")
|
176 |
+
tmp: list[tuple[torch.device, torch.dtype, float, float]] = []
|
177 |
+
memset: set[float] = set()
|
178 |
+
|
179 |
+
for i in range(max(GPU_COUNT, 1)):
|
180 |
+
tmp.append(get_device_dtype_sm(i))
|
181 |
+
|
182 |
+
for j in tmp:
|
183 |
+
device = j[0]
|
184 |
+
memset.add(j[3])
|
185 |
+
if device.type != "cpu":
|
186 |
+
GPU_INFOS.append(f"{device.index}\t{torch.cuda.get_device_name(device.index)}")
|
187 |
+
GPU_INDEX.add(device.index)
|
188 |
+
|
189 |
+
if not GPU_INFOS:
|
190 |
+
IS_GPU = False
|
191 |
+
GPU_INFOS.append(CPU_INFO)
|
192 |
+
GPU_INDEX.add(0)
|
193 |
+
|
194 |
+
infer_device = max(tmp, key=lambda x: (x[2], x[3]))[0]
|
195 |
+
is_half = any(dtype == torch.float16 for _, dtype, _, _ in tmp)
|
196 |
+
|
197 |
+
|
198 |
+
class Config:
|
199 |
+
def __init__(self):
|
200 |
+
self.sovits_path = sovits_path
|
201 |
+
self.gpt_path = gpt_path
|
202 |
+
self.is_half = is_half
|
203 |
+
|
204 |
+
self.cnhubert_path = cnhubert_path
|
205 |
+
self.bert_path = bert_path
|
206 |
+
self.pretrained_sovits_path = pretrained_sovits_path
|
207 |
+
self.pretrained_gpt_path = pretrained_gpt_path
|
208 |
+
|
209 |
+
self.exp_root = exp_root
|
210 |
+
self.python_exec = python_exec
|
211 |
+
self.infer_device = infer_device
|
212 |
+
|
213 |
+
self.webui_port_main = webui_port_main
|
214 |
+
self.webui_port_uvr5 = webui_port_uvr5
|
215 |
+
self.webui_port_infer_tts = webui_port_infer_tts
|
216 |
+
self.webui_port_subfix = webui_port_subfix
|
217 |
+
|
218 |
+
self.api_port = api_port
|