l73jiang commited on
Commit
1b817b0
·
verified ·
1 Parent(s): 2449130

Update config.py

Browse files
Files changed (1) hide show
  1. config.py +45 -45
config.py CHANGED
@@ -8,45 +8,45 @@ from tools.i18n.i18n import I18nAuto
8
 
9
  i18n = I18nAuto(language=os.environ.get("language", "Auto"))
10
 
11
- # from huggingface_hub import hf_hub_download
12
-
13
- # # 1. 定义仓库信息和本地目标路径
14
- # # ----------------------------------------------------
15
- # # 您的远程模型仓库
16
- # repo_id = "l73jiang/Seia-GPT-SOVITS-ProPlus" # <-- 请替换成您的用户名和仓库名
17
- # # 您希望文件被存放在 Space 中的哪个文件夹
18
- # target_dir = "pretrained_models"
19
-
20
-
21
- # # 2. 将所有需要下载的模型文件名放入一个列表
22
- # # ----------------------------------------------------
23
- # files_to_download = [
24
- # "Seia-e15.ckpt",
25
- # "Seia_e8_s240.pth" # <-- 新增了第二个模型文件
26
- # ]
27
-
28
-
29
- # # 3. 确保目标文件夹存在(这个操作只需执行一次)
30
- # # ----------------------------------------------------
31
- # os.makedirs(target_dir, exist_ok=True)
32
- # print(f"目标文件夹 '{target_dir}' 已准备就绪。")
33
-
34
-
35
- # # 4. 循环遍历列表,下载每一个文件
36
- # # ----------------------------------------------------
37
- # for filename in files_to_download:
38
- # print(f"-> 开始从仓库 '{repo_id}' 下载 '{filename}'...")
39
- # try:
40
- # hf_hub_download(
41
- # repo_id=repo_id,
42
- # filename=filename,
43
- # local_dir=target_dir, # 所有文件都下载到同一个目标文件夹
44
- # local_dir_use_symlinks=False
45
- # )
46
- # print(f" 文件 '{filename}' 下载成功!")
47
- # except Exception as e:
48
- # # 增加一个错误处理,这样如果某个文件下载失败,应用不会直接崩溃
49
- # print(f" !!! 下载文件 '{filename}' 时发生错误: {e}")
50
 
51
 
52
  pretrained_sovits_name = {
@@ -55,7 +55,7 @@ pretrained_sovits_name = {
55
  "v3": "pretrained_models/s2Gv3.pth", ###v3v4还要检查vocoder,算了。。。
56
  "v4": "pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
57
  "v2Pro": "pretrained_models/v2Pro/s2Gv2Pro.pth",
58
- "v2ProPlus": "pretrained_models/v2Pro/s2Gv2ProPlus.pth",
59
  }
60
 
61
  pretrained_gpt_name = {
@@ -64,7 +64,7 @@ pretrained_gpt_name = {
64
  "v3": "pretrained_models/s1v3.ckpt",
65
  "v4": "pretrained_models/s1v3.ckpt",
66
  "v2Pro": "pretrained_models/s1v3.ckpt",
67
- "v2ProPlus": "pretrained_models/s1v3.ckpt",
68
  }
69
  name2sovits_path = {
70
  # i18n("不训练直接推v1底模!"): "pretrained_models/s2G488k.pth",
@@ -72,16 +72,16 @@ name2sovits_path = {
72
  # i18n("不训练直接推v3底模!"): "pretrained_models/s2Gv3.pth",
73
  # i18n("不训练直接推v4底模!"): "pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
74
  # i18n("不训练直接推v2Pro底模!"): "pretrained_models/v2Pro/s2Gv2Pro.pth",
75
- i18n("不训练直接推v2ProPlus底模!"): "pretrained_models/v2Pro/s2Gv2ProPlus.pth",
76
- # i18n("百合园圣亚v2ProPlus"): "pretrained_models/Seia_e8_s240.pth",
77
  }
78
  name2gpt_path = {
79
  # i18n("不训练直接推v1底模!"):"pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
80
  # i18n(
81
  # "不训练直接推v2底模!"
82
  # ): "pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
83
- i18n("不训练直接推v3底模!"): "pretrained_models/s1v3.ckpt",
84
- # i18n("百合园圣亚v2ProPlus"): "pretrained_models/Seia-e15.ckpt",
85
  }
86
  SoVITS_weight_root = [
87
  "SoVITS_weights",
 
8
 
9
  i18n = I18nAuto(language=os.environ.get("language", "Auto"))
10
 
11
+ from huggingface_hub import hf_hub_download
12
+
13
+ # 1. 定义仓库信息和本地目标路径
14
+ # ----------------------------------------------------
15
+ # 您的远程模型仓库
16
+ repo_id = "l73jiang/Seia-GPT-SOVITS-ProPlus" # <-- 请替换成您的用户名和仓库名
17
+ # 您希望文件被存放在 Space 中的哪个文件夹
18
+ target_dir = "pretrained_models"
19
+
20
+
21
+ # 2. 将所有需要下载的模型文件名放入一个列表
22
+ # ----------------------------------------------------
23
+ files_to_download = [
24
+ "Seia-e15.ckpt",
25
+ "Seia_e8_s240.pth" # <-- 新增了第二个模型文件
26
+ ]
27
+
28
+
29
+ # 3. 确保目标文件夹存在(这个操作只需执行一次)
30
+ # ----------------------------------------------------
31
+ os.makedirs(target_dir, exist_ok=True)
32
+ print(f"目标文件夹 '{target_dir}' 已准备就绪。")
33
+
34
+
35
+ # 4. 循环遍历列表,下载每一个文件
36
+ # ----------------------------------------------------
37
+ for filename in files_to_download:
38
+ print(f"-> 开始从仓库 '{repo_id}' 下载 '{filename}'...")
39
+ try:
40
+ hf_hub_download(
41
+ repo_id=repo_id,
42
+ filename=filename,
43
+ local_dir=target_dir, # 所有文件都下载到同一个目标文件夹
44
+ local_dir_use_symlinks=False
45
+ )
46
+ print(f" 文件 '{filename}' 下载成功!")
47
+ except Exception as e:
48
+ # 增加一个错误处理,这样如果某个文件下载失败,应用不会直接崩溃
49
+ print(f" !!! 下载文件 '{filename}' 时发生错误: {e}")
50
 
51
 
52
  pretrained_sovits_name = {
 
55
  "v3": "pretrained_models/s2Gv3.pth", ###v3v4还要检查vocoder,算了。。。
56
  "v4": "pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
57
  "v2Pro": "pretrained_models/v2Pro/s2Gv2Pro.pth",
58
+ "v2ProPlus": "pretrained_models/Seia_e8_s240.pth",#"pretrained_models/v2Pro/s2Gv2ProPlus.pth",
59
  }
60
 
61
  pretrained_gpt_name = {
 
64
  "v3": "pretrained_models/s1v3.ckpt",
65
  "v4": "pretrained_models/s1v3.ckpt",
66
  "v2Pro": "pretrained_models/s1v3.ckpt",
67
+ "v2ProPlus": "pretrained_models/Seia-e15.ckpt",#"pretrained_models/s1v3.ckpt",
68
  }
69
  name2sovits_path = {
70
  # i18n("不训练直接推v1底模!"): "pretrained_models/s2G488k.pth",
 
72
  # i18n("不训练直接推v3底模!"): "pretrained_models/s2Gv3.pth",
73
  # i18n("不训练直接推v4底模!"): "pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
74
  # i18n("不训练直接推v2Pro底模!"): "pretrained_models/v2Pro/s2Gv2Pro.pth",
75
+ # i18n("不训练直接推v2ProPlus底模!"): "pretrained_models/v2Pro/s2Gv2ProPlus.pth",
76
+ i18n("百合园圣亚v2ProPlus"): "pretrained_models/Seia_e8_s240.pth",
77
  }
78
  name2gpt_path = {
79
  # i18n("不训练直接推v1底模!"):"pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
80
  # i18n(
81
  # "不训练直接推v2底模!"
82
  # ): "pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
83
+ # i18n("不训练直接推v3底模!"): "pretrained_models/s1v3.ckpt",
84
+ i18n("百合园圣亚v2ProPlus"): "pretrained_models/Seia-e15.ckpt",
85
  }
86
  SoVITS_weight_root = [
87
  "SoVITS_weights",