Update config.py
Browse files
config.py
CHANGED
@@ -8,45 +8,45 @@ from tools.i18n.i18n import I18nAuto
|
|
8 |
|
9 |
i18n = I18nAuto(language=os.environ.get("language", "Auto"))
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
#
|
14 |
-
#
|
15 |
-
#
|
16 |
-
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
#
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
#
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
#
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
#
|
49 |
-
|
50 |
|
51 |
|
52 |
pretrained_sovits_name = {
|
@@ -55,7 +55,7 @@ pretrained_sovits_name = {
|
|
55 |
"v3": "pretrained_models/s2Gv3.pth", ###v3v4还要检查vocoder,算了。。。
|
56 |
"v4": "pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
|
57 |
"v2Pro": "pretrained_models/v2Pro/s2Gv2Pro.pth",
|
58 |
-
"v2ProPlus": "pretrained_models/v2Pro/s2Gv2ProPlus.pth",
|
59 |
}
|
60 |
|
61 |
pretrained_gpt_name = {
|
@@ -64,7 +64,7 @@ pretrained_gpt_name = {
|
|
64 |
"v3": "pretrained_models/s1v3.ckpt",
|
65 |
"v4": "pretrained_models/s1v3.ckpt",
|
66 |
"v2Pro": "pretrained_models/s1v3.ckpt",
|
67 |
-
"v2ProPlus": "pretrained_models/s1v3.ckpt",
|
68 |
}
|
69 |
name2sovits_path = {
|
70 |
# i18n("不训练直接推v1底模!"): "pretrained_models/s2G488k.pth",
|
@@ -72,16 +72,16 @@ name2sovits_path = {
|
|
72 |
# i18n("不训练直接推v3底模!"): "pretrained_models/s2Gv3.pth",
|
73 |
# i18n("不训练直接推v4底模!"): "pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
|
74 |
# i18n("不训练直接推v2Pro底模!"): "pretrained_models/v2Pro/s2Gv2Pro.pth",
|
75 |
-
i18n("不训练直接推v2ProPlus底模!"): "pretrained_models/v2Pro/s2Gv2ProPlus.pth",
|
76 |
-
|
77 |
}
|
78 |
name2gpt_path = {
|
79 |
# i18n("不训练直接推v1底模!"):"pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
80 |
# i18n(
|
81 |
# "不训练直接推v2底模!"
|
82 |
# ): "pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
83 |
-
i18n("不训练直接推v3底模!"): "pretrained_models/s1v3.ckpt",
|
84 |
-
|
85 |
}
|
86 |
SoVITS_weight_root = [
|
87 |
"SoVITS_weights",
|
|
|
8 |
|
9 |
i18n = I18nAuto(language=os.environ.get("language", "Auto"))
|
10 |
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
|
13 |
+
# 1. 定义仓库信息和本地目标路径
|
14 |
+
# ----------------------------------------------------
|
15 |
+
# 您的远程模型仓库
|
16 |
+
repo_id = "l73jiang/Seia-GPT-SOVITS-ProPlus" # <-- 请替换成您的用户名和仓库名
|
17 |
+
# 您希望文件被存放在 Space 中的哪个文件夹
|
18 |
+
target_dir = "pretrained_models"
|
19 |
+
|
20 |
+
|
21 |
+
# 2. 将所有需要下载的模型文件名放入一个列表
|
22 |
+
# ----------------------------------------------------
|
23 |
+
files_to_download = [
|
24 |
+
"Seia-e15.ckpt",
|
25 |
+
"Seia_e8_s240.pth" # <-- 新增了第二个模型文件
|
26 |
+
]
|
27 |
+
|
28 |
+
|
29 |
+
# 3. 确保目标文件夹存在(这个操作只需执行一次)
|
30 |
+
# ----------------------------------------------------
|
31 |
+
os.makedirs(target_dir, exist_ok=True)
|
32 |
+
print(f"目标文件夹 '{target_dir}' 已准备就绪。")
|
33 |
+
|
34 |
+
|
35 |
+
# 4. 循环遍历列表,下载每一个文件
|
36 |
+
# ----------------------------------------------------
|
37 |
+
for filename in files_to_download:
|
38 |
+
print(f"-> 开始从仓库 '{repo_id}' 下载 '{filename}'...")
|
39 |
+
try:
|
40 |
+
hf_hub_download(
|
41 |
+
repo_id=repo_id,
|
42 |
+
filename=filename,
|
43 |
+
local_dir=target_dir, # 所有文件都下载到同一个目标文件夹
|
44 |
+
local_dir_use_symlinks=False
|
45 |
+
)
|
46 |
+
print(f" 文件 '{filename}' 下载成功!")
|
47 |
+
except Exception as e:
|
48 |
+
# 增加一个错误处理,这样如果某个文件下载失败,应用不会直接崩溃
|
49 |
+
print(f" !!! 下载文件 '{filename}' 时发生错误: {e}")
|
50 |
|
51 |
|
52 |
pretrained_sovits_name = {
|
|
|
55 |
"v3": "pretrained_models/s2Gv3.pth", ###v3v4还要检查vocoder,算了。。。
|
56 |
"v4": "pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
|
57 |
"v2Pro": "pretrained_models/v2Pro/s2Gv2Pro.pth",
|
58 |
+
"v2ProPlus": "pretrained_models/Seia_e8_s240.pth",#"pretrained_models/v2Pro/s2Gv2ProPlus.pth",
|
59 |
}
|
60 |
|
61 |
pretrained_gpt_name = {
|
|
|
64 |
"v3": "pretrained_models/s1v3.ckpt",
|
65 |
"v4": "pretrained_models/s1v3.ckpt",
|
66 |
"v2Pro": "pretrained_models/s1v3.ckpt",
|
67 |
+
"v2ProPlus": "pretrained_models/Seia-e15.ckpt",#"pretrained_models/s1v3.ckpt",
|
68 |
}
|
69 |
name2sovits_path = {
|
70 |
# i18n("不训练直接推v1底模!"): "pretrained_models/s2G488k.pth",
|
|
|
72 |
# i18n("不训练直接推v3底模!"): "pretrained_models/s2Gv3.pth",
|
73 |
# i18n("不训练直接推v4底模!"): "pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
|
74 |
# i18n("不训练直接推v2Pro底模!"): "pretrained_models/v2Pro/s2Gv2Pro.pth",
|
75 |
+
# i18n("不训练直接推v2ProPlus底模!"): "pretrained_models/v2Pro/s2Gv2ProPlus.pth",
|
76 |
+
i18n("百合园圣亚v2ProPlus"): "pretrained_models/Seia_e8_s240.pth",
|
77 |
}
|
78 |
name2gpt_path = {
|
79 |
# i18n("不训练直接推v1底模!"):"pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
80 |
# i18n(
|
81 |
# "不训练直接推v2底模!"
|
82 |
# ): "pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
83 |
+
# i18n("不训练直接推v3底模!"): "pretrained_models/s1v3.ckpt",
|
84 |
+
i18n("百合园圣亚v2ProPlus"): "pretrained_models/Seia-e15.ckpt",
|
85 |
}
|
86 |
SoVITS_weight_root = [
|
87 |
"SoVITS_weights",
|