lacos03's picture
Them beam search
018ec46
raw
history blame
5.93 kB
import gradio as gr
import torch
from transformers import pipeline, AutoModelForSeq2SeqLM, BartTokenizer, AutoModelForCausalLM, AutoTokenizer
from diffusers import StableDiffusionPipeline
from PIL import Image
import io
import os
import zipfile
import traceback
# === Thiết lập thiết bị ===
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Device: {device}")
# === Load models ===
# BART Summarizer
model_name = "lacos03/bart-base-finetuned-xsum"
tokenizer = BartTokenizer.from_pretrained(model_name, use_fast=False)
model = AutoModelForSeq2SeqLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if device == "cuda" else torch.float32
).to(device)
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=0 if device=="cuda" else -1)
# Promptist
promptist_model = AutoModelForCausalLM.from_pretrained(
"microsoft/Promptist",
torch_dtype=torch.float16 if device == "cuda" else torch.float32
).to(device)
promptist_tokenizer = AutoTokenizer.from_pretrained("gpt2")
promptist_tokenizer.pad_token = promptist_tokenizer.eos_token
promptist_tokenizer.padding_side = "left"
# Stable Diffusion + LoRA
sd_model_id = "runwayml/stable-diffusion-v1-5"
image_generator = StableDiffusionPipeline.from_pretrained(
sd_model_id,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
use_safetensors=True
).to(device)
lora_weights = "lacos03/std-1.5-lora-midjourney-1.0"
image_generator.load_lora_weights(lora_weights)
# Cấu hình beam search cho BART
NUM_BEAMS = 10
NO_REPEAT_NGRAM_SIZE = 3
LENGTH_PENALTY = 1.0
MIN_NEW_TOKENS = 10
MAX_NEW_TOKENS = 62
# === Hàm xử lý ===
def summarize_article(article_text):
"""Tóm tắt bài viết và tạo prompt refinement"""
if not article_text.strip():
return "[Empty]", "[Empty]"
summary = summarizer(article_text, num_beams=NUM_BEAMS,
no_repeat_ngram_size=NO_REPEAT_NGRAM_SIZE,
length_penalty=LENGTH_PENALTY,
min_new_tokens=MIN_NEW_TOKENS,
max_new_tokens=MAX_NEW_TOKENS, do_sample=False)[0]["summary_text"]
title = summary.split(".")[0] + "."
# Prompt refinement
input_ids = promptist_tokenizer(title.strip() + " Rephrase:", return_tensors="pt").input_ids.to(device)
eos_id = promptist_tokenizer.eos_token_id
outputs = promptist_model.generate(
input_ids,
do_sample=False,
max_new_tokens=75,
num_beams=8,
num_return_sequences=1,
eos_token_id=eos_id,
pad_token_id=eos_id,
length_penalty=-1.0
)
output_texts = promptist_tokenizer.batch_decode(outputs, skip_special_tokens=True)
prompt = output_texts[0].replace(title + " Rephrase:", "").strip()
return title, prompt
def generate_images(prompt, style, num_images=4):
"""Sinh nhiều ảnh"""
styled_prompt = f"{prompt}, {style.lower()} style"
results = image_generator(
styled_prompt,
num_inference_steps=50,
guidance_scale=7.5,
num_images_per_prompt=num_images
).images
return results
def save_selected_images(selected_idx, all_images):
"""Lưu ảnh đã chọn và nén thành ZIP"""
if not selected_idx:
return None
temp_dir = "./temp_selected"
os.makedirs(temp_dir, exist_ok=True)
zip_path = os.path.join(temp_dir, "selected_images.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
for idx in selected_idx:
img = all_images[int(idx)]
img_path = os.path.join(temp_dir, f"image_{idx}.png")
img.save(img_path, format="PNG")
zipf.write(img_path, f"image_{idx}.png")
return zip_path
# === UI Gradio ===
def create_app():
with gr.Blocks() as demo:
gr.Markdown("## 📰 Article → 🖼️ Multiple Image Generator with Selection")
# Bước 1: Nhập bài viết và sinh tiêu đề + prompt
with gr.Row():
article_input = gr.Textbox(label="📄 Bài viết", lines=10)
style_dropdown = gr.Dropdown(
choices=["Art", "Anime", "Watercolor", "Cyberpunk"],
label="🎨 Phong cách ảnh", value="Art"
)
num_images_slider = gr.Slider(1, 8, value=4, step=1, label="🔢 Số lượng ảnh")
btn_summary = gr.Button("📌 Sinh Tiêu đề & Prompt")
title_output = gr.Textbox(label="Tiêu đề")
prompt_output = gr.Textbox(label="Prompt sinh ảnh")
# Bước 2: Sinh ảnh từ prompt đã refine
btn_generate_images = gr.Button("🎨 Sinh ảnh từ Prompt")
gallery = gr.Gallery(label="🖼️ Ảnh minh họa", columns=2, height=600)
selected_indices = gr.CheckboxGroup(choices=[], label="Chọn ảnh để tải về")
# Bước 3: Tải ảnh đã chọn
btn_download = gr.Button("📥 Tải ảnh đã chọn")
download_file = gr.File(label="File ZIP tải về")
# Logic
btn_summary.click(
fn=summarize_article,
inputs=[article_input],
outputs=[title_output, prompt_output]
)
def update_gallery(prompt, style, num_images):
images = generate_images(prompt, style, num_images)
choices = [str(i) for i in range(len(images))]
return images, gr.update(choices=choices, value=[]), images # images lưu tạm trong state
image_state = gr.State([])
btn_generate_images.click(
fn=update_gallery,
inputs=[prompt_output, style_dropdown, num_images_slider],
outputs=[gallery, selected_indices, image_state]
)
btn_download.click(
fn=save_selected_images,
inputs=[selected_indices, image_state],
outputs=[download_file]
)
return demo
# === Chạy app ===
if __name__ == "__main__":
app = create_app()
app.launch(debug=True, share=True)