Spaces:
Sleeping
Sleeping
import streamlit as st | |
import cv2 | |
import numpy as np | |
import pandas as pd | |
from PIL import Image | |
import torch | |
from torchvision.transforms import Compose, Resize, ToTensor, Normalize | |
from segment_anything import SamPredictor, sam_model_registry | |
# Set Streamlit configuration | |
st.set_page_config(page_title="Volume Estimator", layout="wide") | |
st.title("π¦ Volume Estimation using SAM Segmentation + MiDaS Depth") | |
# Load SAM and MiDaS models | |
def load_models(): | |
sam_checkpoint = "C:/Users/Administrator/Desktop/streamlit_tl/models/sam_vit_h_4b8939.pth" | |
sam = sam_model_registry["vit_h"](checkpoint=sam_checkpoint).to("cuda" if torch.cuda.is_available() else "cpu") | |
predictor = SamPredictor(sam) | |
midas = torch.hub.load("intel-isl/MiDaS", "DPT_Large") | |
midas.eval() | |
midas_transform = Compose([ | |
Resize(384), | |
ToTensor(), | |
Normalize(mean=[0.5]*3, std=[0.5]*3) | |
]) | |
return predictor, midas, midas_transform | |
predictor, midas_model, midas_transform = load_models() | |
# Input source selection | |
source_option = st.radio("Select input source", ("Upload Image", "Use Webcam")) | |
uploaded_file = None | |
image_pil = None | |
if source_option == "Upload Image": | |
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
if uploaded_file: | |
image_pil = Image.open(uploaded_file).convert("RGB") | |
elif source_option == "Use Webcam": | |
run_camera = st.checkbox("Start Camera") | |
if run_camera: | |
cap = cv2.VideoCapture(0) | |
stframe = st.empty() | |
capture = False | |
while run_camera and cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
stframe.image(frame_rgb, caption="Live Camera Feed", channels="RGB") | |
if st.button("πΈ Capture Frame"): | |
image_pil = Image.fromarray(frame_rgb) | |
run_camera = False | |
cap.release() | |
break | |
# Continue processing if we have an image | |
if image_pil: | |
image_np = np.array(image_pil) | |
img_h, img_w = image_np.shape[:2] | |
st.image(image_pil, caption="Selected Image", use_container_width=True) | |
# Real-world reference dimensions | |
real_image_width_cm = 100 | |
real_image_height_cm = 75 | |
assumed_max_depth_cm = 100 | |
pixel_to_cm_x = real_image_width_cm / img_w | |
pixel_to_cm_y = real_image_height_cm / img_h | |
# SAM Segmentation | |
predictor.set_image(image_np) | |
masks, _, _ = predictor.predict(multimask_output=False) | |
# MiDaS Depth Estimation | |
input_tensor = midas_transform(image_pil).unsqueeze(0) | |
with torch.no_grad(): | |
depth_prediction = midas_model(input_tensor).squeeze().cpu().numpy() | |
depth_resized = cv2.resize(depth_prediction, (img_w, img_h)) | |
# Object volume computation | |
volume_data = [] | |
for i, mask in enumerate(masks): | |
mask_np = mask | |
x, y, w, h = cv2.boundingRect(mask_np.astype(np.uint8)) | |
width_px = w | |
height_px = h | |
width_cm = width_px * pixel_to_cm_x | |
height_cm = height_px * pixel_to_cm_y | |
depth_masked = depth_resized[mask_np > 0.5] | |
if depth_masked.size == 0: | |
continue | |
normalized_depth = (depth_masked - np.min(depth_resized)) / (np.max(depth_resized) - np.min(depth_resized) + 1e-6) | |
depth_cm = np.mean(normalized_depth) * assumed_max_depth_cm | |
volume_cm3 = round(depth_cm * width_cm * height_cm, 2) | |
volume_data.append({ | |
"Object": f"Object #{i+1}", | |
"Length (Depth)": f"{round(depth_cm, 2)} cm", | |
"Breadth (Width)": f"{round(width_cm, 2)} cm", | |
"Height": f"{round(height_cm, 2)} cm", | |
"Volume": f"{volume_cm3} cmΒ³" | |
}) | |
# Display volume table | |
if volume_data: | |
df = pd.DataFrame(volume_data) | |
st.markdown("### π Object Dimensions and Volume") | |
st.dataframe(df) | |
csv = df.to_csv(index=False).encode('utf-8') | |
st.download_button("π Download Volume Table as CSV", csv, "object_volumes_with_units.csv", "text/csv") | |
else: | |
st.warning("π« No objects were segmented.") | |