Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- MLProject.py +93 -0
- requirements.txt +4 -0
- tips.csv +245 -0
MLProject.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
from sklearn.preprocessing import OneHotEncoder, StandardScaler
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.tree import DecisionTreeClassifier
|
8 |
+
from sklearn.neighbors import KNeighborsRegressor
|
9 |
+
from sklearn.metrics import mean_squared_error
|
10 |
+
|
11 |
+
|
12 |
+
st.title(":red[Welcome to My ML Project]")
|
13 |
+
df=pd.read_csv(r"C:\Users\Administrator\Desktop\streamlit_336\tips.csv")
|
14 |
+
|
15 |
+
y=df.pop("total_bill")
|
16 |
+
x=df
|
17 |
+
|
18 |
+
X_train, X_test, y_train, y_test=train_test_split(x,y,test_size=0.15,random_state=30)
|
19 |
+
|
20 |
+
numerical_data=X_train.select_dtypes("number")
|
21 |
+
cat_data=X_train.select_dtypes("object")
|
22 |
+
|
23 |
+
|
24 |
+
encoder=OneHotEncoder(sparse=False)
|
25 |
+
X_train_cat=pd.DataFrame(encoder.fit_transform(cat_data), columns=encoder.get_feature_names_out())
|
26 |
+
scaler=StandardScaler()
|
27 |
+
res=scaler.fit_transform(numerical_data)
|
28 |
+
X_train_num=pd.DataFrame(res,columns=numerical_data.columns)
|
29 |
+
Final_X_train_data=pd.concat([X_train_cat,X_train_num],axis=1)
|
30 |
+
|
31 |
+
X_test_num=X_test.select_dtypes("number")
|
32 |
+
X_test_cat=X_test.select_dtypes("object")
|
33 |
+
|
34 |
+
X_test_num_trans=scaler.transform(X_test_num)
|
35 |
+
res1=pd.DataFrame(X_test_num_trans, columns=X_test_num.columns)
|
36 |
+
|
37 |
+
|
38 |
+
X_test_cat_trans=encoder.transform(X_test_cat)
|
39 |
+
res2=pd.DataFrame(X_test_cat_trans, columns=encoder.get_feature_names_out())
|
40 |
+
|
41 |
+
Final_X_test=pd.concat([res2,res1],axis=1)
|
42 |
+
|
43 |
+
regression=KNeighborsRegressor()
|
44 |
+
regression.fit(Final_X_train_data,y_train)
|
45 |
+
y_pred=regression.predict(Final_X_test)
|
46 |
+
|
47 |
+
mean_squared_error(y_test,y_pred)
|
48 |
+
|
49 |
+
#Application
|
50 |
+
tip = st.number_input("Enter Customer Tip")
|
51 |
+
|
52 |
+
sex =["Female","Male"]
|
53 |
+
select_sex=st.selectbox("Select Customer Gender",sex)
|
54 |
+
|
55 |
+
smoker=["No","Yes"]
|
56 |
+
select_smoker=st.selectbox("Select Customer Smoker or not",smoker)
|
57 |
+
|
58 |
+
day=["Sun","Sat","Fri"]
|
59 |
+
select_day=st.selectbox("Select Day",day)
|
60 |
+
|
61 |
+
|
62 |
+
time_options = ["Dinner", "Lunch"]
|
63 |
+
select_time = st.selectbox("Select Time", time_options)
|
64 |
+
size=st.number_input("Enter Size")
|
65 |
+
|
66 |
+
if st.button("Predict total bill"):
|
67 |
+
query_point=pd.DataFrame([
|
68 |
+
{
|
69 |
+
"tip":tip,
|
70 |
+
"sex":select_sex,
|
71 |
+
"smoker":select_smoker,
|
72 |
+
"day":select_day,
|
73 |
+
"time":select_time,
|
74 |
+
"size":size
|
75 |
+
|
76 |
+
}]
|
77 |
+
)
|
78 |
+
cat_query_point=query_point.select_dtypes("object")
|
79 |
+
|
80 |
+
num_query_point=query_point.select_dtypes("number")
|
81 |
+
|
82 |
+
cat_query_point_trans = pd.DataFrame(encoder.transform(cat_query_point),columns=encoder.get_feature_names_out())
|
83 |
+
num_query_point_trans=pd.DataFrame(scaler.transform(num_query_point),columns=X_test_num.columns)
|
84 |
+
|
85 |
+
final_query_point=pd.concat([cat_query_point_trans, num_query_point_trans], axis=1)
|
86 |
+
|
87 |
+
def fun(query_point):
|
88 |
+
res=regression.predict(query_point)[0]
|
89 |
+
return res
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
st.write(fun(final_query_point))
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
numpy
|
4 |
+
scikit-learn
|
tips.csv
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
total_bill,tip,sex,smoker,day,time,size
|
2 |
+
16.99,1.01,Female,No,Sun,Dinner,2
|
3 |
+
10.34,1.66,Male,No,Sun,Dinner,3
|
4 |
+
21.01,3.5,Male,No,Sun,Dinner,3
|
5 |
+
23.68,3.31,Male,No,Sun,Dinner,2
|
6 |
+
24.59,3.61,Female,No,Sun,Dinner,4
|
7 |
+
25.29,4.71,Male,No,Sun,Dinner,4
|
8 |
+
8.77,2.0,Male,No,Sun,Dinner,2
|
9 |
+
26.88,3.12,Male,No,Sun,Dinner,4
|
10 |
+
15.04,1.96,Male,No,Sun,Dinner,2
|
11 |
+
14.78,3.23,Male,No,Sun,Dinner,2
|
12 |
+
10.27,1.71,Male,No,Sun,Dinner,2
|
13 |
+
35.26,5.0,Female,No,Sun,Dinner,4
|
14 |
+
15.42,1.57,Male,No,Sun,Dinner,2
|
15 |
+
18.43,3.0,Male,No,Sun,Dinner,4
|
16 |
+
14.83,3.02,Female,No,Sun,Dinner,2
|
17 |
+
21.58,3.92,Male,No,Sun,Dinner,2
|
18 |
+
10.33,1.67,Female,No,Sun,Dinner,3
|
19 |
+
16.29,3.71,Male,No,Sun,Dinner,3
|
20 |
+
16.97,3.5,Female,No,Sun,Dinner,3
|
21 |
+
20.65,3.35,Male,No,Sat,Dinner,3
|
22 |
+
17.92,4.08,Male,No,Sat,Dinner,2
|
23 |
+
20.29,2.75,Female,No,Sat,Dinner,2
|
24 |
+
15.77,2.23,Female,No,Sat,Dinner,2
|
25 |
+
39.42,7.58,Male,No,Sat,Dinner,4
|
26 |
+
19.82,3.18,Male,No,Sat,Dinner,2
|
27 |
+
17.81,2.34,Male,No,Sat,Dinner,4
|
28 |
+
13.37,2.0,Male,No,Sat,Dinner,2
|
29 |
+
12.69,2.0,Male,No,Sat,Dinner,2
|
30 |
+
21.7,4.3,Male,No,Sat,Dinner,2
|
31 |
+
19.65,3.0,Female,No,Sat,Dinner,2
|
32 |
+
9.55,1.45,Male,No,Sat,Dinner,2
|
33 |
+
18.35,2.5,Male,No,Sat,Dinner,4
|
34 |
+
15.06,3.0,Female,No,Sat,Dinner,2
|
35 |
+
20.69,2.45,Female,No,Sat,Dinner,4
|
36 |
+
17.78,3.27,Male,No,Sat,Dinner,2
|
37 |
+
24.06,3.6,Male,No,Sat,Dinner,3
|
38 |
+
16.31,2.0,Male,No,Sat,Dinner,3
|
39 |
+
16.93,3.07,Female,No,Sat,Dinner,3
|
40 |
+
18.69,2.31,Male,No,Sat,Dinner,3
|
41 |
+
31.27,5.0,Male,No,Sat,Dinner,3
|
42 |
+
16.04,2.24,Male,No,Sat,Dinner,3
|
43 |
+
17.46,2.54,Male,No,Sun,Dinner,2
|
44 |
+
13.94,3.06,Male,No,Sun,Dinner,2
|
45 |
+
9.68,1.32,Male,No,Sun,Dinner,2
|
46 |
+
30.4,5.6,Male,No,Sun,Dinner,4
|
47 |
+
18.29,3.0,Male,No,Sun,Dinner,2
|
48 |
+
22.23,5.0,Male,No,Sun,Dinner,2
|
49 |
+
32.4,6.0,Male,No,Sun,Dinner,4
|
50 |
+
28.55,2.05,Male,No,Sun,Dinner,3
|
51 |
+
18.04,3.0,Male,No,Sun,Dinner,2
|
52 |
+
12.54,2.5,Male,No,Sun,Dinner,2
|
53 |
+
10.29,2.6,Female,No,Sun,Dinner,2
|
54 |
+
34.81,5.2,Female,No,Sun,Dinner,4
|
55 |
+
9.94,1.56,Male,No,Sun,Dinner,2
|
56 |
+
25.56,4.34,Male,No,Sun,Dinner,4
|
57 |
+
19.49,3.51,Male,No,Sun,Dinner,2
|
58 |
+
38.01,3.0,Male,Yes,Sat,Dinner,4
|
59 |
+
26.41,1.5,Female,No,Sat,Dinner,2
|
60 |
+
11.24,1.76,Male,Yes,Sat,Dinner,2
|
61 |
+
48.27,6.73,Male,No,Sat,Dinner,4
|
62 |
+
20.29,3.21,Male,Yes,Sat,Dinner,2
|
63 |
+
13.81,2.0,Male,Yes,Sat,Dinner,2
|
64 |
+
11.02,1.98,Male,Yes,Sat,Dinner,2
|
65 |
+
18.29,3.76,Male,Yes,Sat,Dinner,4
|
66 |
+
17.59,2.64,Male,No,Sat,Dinner,3
|
67 |
+
20.08,3.15,Male,No,Sat,Dinner,3
|
68 |
+
16.45,2.47,Female,No,Sat,Dinner,2
|
69 |
+
3.07,1.0,Female,Yes,Sat,Dinner,1
|
70 |
+
20.23,2.01,Male,No,Sat,Dinner,2
|
71 |
+
15.01,2.09,Male,Yes,Sat,Dinner,2
|
72 |
+
12.02,1.97,Male,No,Sat,Dinner,2
|
73 |
+
17.07,3.0,Female,No,Sat,Dinner,3
|
74 |
+
26.86,3.14,Female,Yes,Sat,Dinner,2
|
75 |
+
25.28,5.0,Female,Yes,Sat,Dinner,2
|
76 |
+
14.73,2.2,Female,No,Sat,Dinner,2
|
77 |
+
10.51,1.25,Male,No,Sat,Dinner,2
|
78 |
+
17.92,3.08,Male,Yes,Sat,Dinner,2
|
79 |
+
27.2,4.0,Male,No,Thur,Lunch,4
|
80 |
+
22.76,3.0,Male,No,Thur,Lunch,2
|
81 |
+
17.29,2.71,Male,No,Thur,Lunch,2
|
82 |
+
19.44,3.0,Male,Yes,Thur,Lunch,2
|
83 |
+
16.66,3.4,Male,No,Thur,Lunch,2
|
84 |
+
10.07,1.83,Female,No,Thur,Lunch,1
|
85 |
+
32.68,5.0,Male,Yes,Thur,Lunch,2
|
86 |
+
15.98,2.03,Male,No,Thur,Lunch,2
|
87 |
+
34.83,5.17,Female,No,Thur,Lunch,4
|
88 |
+
13.03,2.0,Male,No,Thur,Lunch,2
|
89 |
+
18.28,4.0,Male,No,Thur,Lunch,2
|
90 |
+
24.71,5.85,Male,No,Thur,Lunch,2
|
91 |
+
21.16,3.0,Male,No,Thur,Lunch,2
|
92 |
+
28.97,3.0,Male,Yes,Fri,Dinner,2
|
93 |
+
22.49,3.5,Male,No,Fri,Dinner,2
|
94 |
+
5.75,1.0,Female,Yes,Fri,Dinner,2
|
95 |
+
16.32,4.3,Female,Yes,Fri,Dinner,2
|
96 |
+
22.75,3.25,Female,No,Fri,Dinner,2
|
97 |
+
40.17,4.73,Male,Yes,Fri,Dinner,4
|
98 |
+
27.28,4.0,Male,Yes,Fri,Dinner,2
|
99 |
+
12.03,1.5,Male,Yes,Fri,Dinner,2
|
100 |
+
21.01,3.0,Male,Yes,Fri,Dinner,2
|
101 |
+
12.46,1.5,Male,No,Fri,Dinner,2
|
102 |
+
11.35,2.5,Female,Yes,Fri,Dinner,2
|
103 |
+
15.38,3.0,Female,Yes,Fri,Dinner,2
|
104 |
+
44.3,2.5,Female,Yes,Sat,Dinner,3
|
105 |
+
22.42,3.48,Female,Yes,Sat,Dinner,2
|
106 |
+
20.92,4.08,Female,No,Sat,Dinner,2
|
107 |
+
15.36,1.64,Male,Yes,Sat,Dinner,2
|
108 |
+
20.49,4.06,Male,Yes,Sat,Dinner,2
|
109 |
+
25.21,4.29,Male,Yes,Sat,Dinner,2
|
110 |
+
18.24,3.76,Male,No,Sat,Dinner,2
|
111 |
+
14.31,4.0,Female,Yes,Sat,Dinner,2
|
112 |
+
14.0,3.0,Male,No,Sat,Dinner,2
|
113 |
+
7.25,1.0,Female,No,Sat,Dinner,1
|
114 |
+
38.07,4.0,Male,No,Sun,Dinner,3
|
115 |
+
23.95,2.55,Male,No,Sun,Dinner,2
|
116 |
+
25.71,4.0,Female,No,Sun,Dinner,3
|
117 |
+
17.31,3.5,Female,No,Sun,Dinner,2
|
118 |
+
29.93,5.07,Male,No,Sun,Dinner,4
|
119 |
+
10.65,1.5,Female,No,Thur,Lunch,2
|
120 |
+
12.43,1.8,Female,No,Thur,Lunch,2
|
121 |
+
24.08,2.92,Female,No,Thur,Lunch,4
|
122 |
+
11.69,2.31,Male,No,Thur,Lunch,2
|
123 |
+
13.42,1.68,Female,No,Thur,Lunch,2
|
124 |
+
14.26,2.5,Male,No,Thur,Lunch,2
|
125 |
+
15.95,2.0,Male,No,Thur,Lunch,2
|
126 |
+
12.48,2.52,Female,No,Thur,Lunch,2
|
127 |
+
29.8,4.2,Female,No,Thur,Lunch,6
|
128 |
+
8.52,1.48,Male,No,Thur,Lunch,2
|
129 |
+
14.52,2.0,Female,No,Thur,Lunch,2
|
130 |
+
11.38,2.0,Female,No,Thur,Lunch,2
|
131 |
+
22.82,2.18,Male,No,Thur,Lunch,3
|
132 |
+
19.08,1.5,Male,No,Thur,Lunch,2
|
133 |
+
20.27,2.83,Female,No,Thur,Lunch,2
|
134 |
+
11.17,1.5,Female,No,Thur,Lunch,2
|
135 |
+
12.26,2.0,Female,No,Thur,Lunch,2
|
136 |
+
18.26,3.25,Female,No,Thur,Lunch,2
|
137 |
+
8.51,1.25,Female,No,Thur,Lunch,2
|
138 |
+
10.33,2.0,Female,No,Thur,Lunch,2
|
139 |
+
14.15,2.0,Female,No,Thur,Lunch,2
|
140 |
+
16.0,2.0,Male,Yes,Thur,Lunch,2
|
141 |
+
13.16,2.75,Female,No,Thur,Lunch,2
|
142 |
+
17.47,3.5,Female,No,Thur,Lunch,2
|
143 |
+
34.3,6.7,Male,No,Thur,Lunch,6
|
144 |
+
41.19,5.0,Male,No,Thur,Lunch,5
|
145 |
+
27.05,5.0,Female,No,Thur,Lunch,6
|
146 |
+
16.43,2.3,Female,No,Thur,Lunch,2
|
147 |
+
8.35,1.5,Female,No,Thur,Lunch,2
|
148 |
+
18.64,1.36,Female,No,Thur,Lunch,3
|
149 |
+
11.87,1.63,Female,No,Thur,Lunch,2
|
150 |
+
9.78,1.73,Male,No,Thur,Lunch,2
|
151 |
+
7.51,2.0,Male,No,Thur,Lunch,2
|
152 |
+
14.07,2.5,Male,No,Sun,Dinner,2
|
153 |
+
13.13,2.0,Male,No,Sun,Dinner,2
|
154 |
+
17.26,2.74,Male,No,Sun,Dinner,3
|
155 |
+
24.55,2.0,Male,No,Sun,Dinner,4
|
156 |
+
19.77,2.0,Male,No,Sun,Dinner,4
|
157 |
+
29.85,5.14,Female,No,Sun,Dinner,5
|
158 |
+
48.17,5.0,Male,No,Sun,Dinner,6
|
159 |
+
25.0,3.75,Female,No,Sun,Dinner,4
|
160 |
+
13.39,2.61,Female,No,Sun,Dinner,2
|
161 |
+
16.49,2.0,Male,No,Sun,Dinner,4
|
162 |
+
21.5,3.5,Male,No,Sun,Dinner,4
|
163 |
+
12.66,2.5,Male,No,Sun,Dinner,2
|
164 |
+
16.21,2.0,Female,No,Sun,Dinner,3
|
165 |
+
13.81,2.0,Male,No,Sun,Dinner,2
|
166 |
+
17.51,3.0,Female,Yes,Sun,Dinner,2
|
167 |
+
24.52,3.48,Male,No,Sun,Dinner,3
|
168 |
+
20.76,2.24,Male,No,Sun,Dinner,2
|
169 |
+
31.71,4.5,Male,No,Sun,Dinner,4
|
170 |
+
10.59,1.61,Female,Yes,Sat,Dinner,2
|
171 |
+
10.63,2.0,Female,Yes,Sat,Dinner,2
|
172 |
+
50.81,10.0,Male,Yes,Sat,Dinner,3
|
173 |
+
15.81,3.16,Male,Yes,Sat,Dinner,2
|
174 |
+
7.25,5.15,Male,Yes,Sun,Dinner,2
|
175 |
+
31.85,3.18,Male,Yes,Sun,Dinner,2
|
176 |
+
16.82,4.0,Male,Yes,Sun,Dinner,2
|
177 |
+
32.9,3.11,Male,Yes,Sun,Dinner,2
|
178 |
+
17.89,2.0,Male,Yes,Sun,Dinner,2
|
179 |
+
14.48,2.0,Male,Yes,Sun,Dinner,2
|
180 |
+
9.6,4.0,Female,Yes,Sun,Dinner,2
|
181 |
+
34.63,3.55,Male,Yes,Sun,Dinner,2
|
182 |
+
34.65,3.68,Male,Yes,Sun,Dinner,4
|
183 |
+
23.33,5.65,Male,Yes,Sun,Dinner,2
|
184 |
+
45.35,3.5,Male,Yes,Sun,Dinner,3
|
185 |
+
23.17,6.5,Male,Yes,Sun,Dinner,4
|
186 |
+
40.55,3.0,Male,Yes,Sun,Dinner,2
|
187 |
+
20.69,5.0,Male,No,Sun,Dinner,5
|
188 |
+
20.9,3.5,Female,Yes,Sun,Dinner,3
|
189 |
+
30.46,2.0,Male,Yes,Sun,Dinner,5
|
190 |
+
18.15,3.5,Female,Yes,Sun,Dinner,3
|
191 |
+
23.1,4.0,Male,Yes,Sun,Dinner,3
|
192 |
+
15.69,1.5,Male,Yes,Sun,Dinner,2
|
193 |
+
19.81,4.19,Female,Yes,Thur,Lunch,2
|
194 |
+
28.44,2.56,Male,Yes,Thur,Lunch,2
|
195 |
+
15.48,2.02,Male,Yes,Thur,Lunch,2
|
196 |
+
16.58,4.0,Male,Yes,Thur,Lunch,2
|
197 |
+
7.56,1.44,Male,No,Thur,Lunch,2
|
198 |
+
10.34,2.0,Male,Yes,Thur,Lunch,2
|
199 |
+
43.11,5.0,Female,Yes,Thur,Lunch,4
|
200 |
+
13.0,2.0,Female,Yes,Thur,Lunch,2
|
201 |
+
13.51,2.0,Male,Yes,Thur,Lunch,2
|
202 |
+
18.71,4.0,Male,Yes,Thur,Lunch,3
|
203 |
+
12.74,2.01,Female,Yes,Thur,Lunch,2
|
204 |
+
13.0,2.0,Female,Yes,Thur,Lunch,2
|
205 |
+
16.4,2.5,Female,Yes,Thur,Lunch,2
|
206 |
+
20.53,4.0,Male,Yes,Thur,Lunch,4
|
207 |
+
16.47,3.23,Female,Yes,Thur,Lunch,3
|
208 |
+
26.59,3.41,Male,Yes,Sat,Dinner,3
|
209 |
+
38.73,3.0,Male,Yes,Sat,Dinner,4
|
210 |
+
24.27,2.03,Male,Yes,Sat,Dinner,2
|
211 |
+
12.76,2.23,Female,Yes,Sat,Dinner,2
|
212 |
+
30.06,2.0,Male,Yes,Sat,Dinner,3
|
213 |
+
25.89,5.16,Male,Yes,Sat,Dinner,4
|
214 |
+
48.33,9.0,Male,No,Sat,Dinner,4
|
215 |
+
13.27,2.5,Female,Yes,Sat,Dinner,2
|
216 |
+
28.17,6.5,Female,Yes,Sat,Dinner,3
|
217 |
+
12.9,1.1,Female,Yes,Sat,Dinner,2
|
218 |
+
28.15,3.0,Male,Yes,Sat,Dinner,5
|
219 |
+
11.59,1.5,Male,Yes,Sat,Dinner,2
|
220 |
+
7.74,1.44,Male,Yes,Sat,Dinner,2
|
221 |
+
30.14,3.09,Female,Yes,Sat,Dinner,4
|
222 |
+
12.16,2.2,Male,Yes,Fri,Lunch,2
|
223 |
+
13.42,3.48,Female,Yes,Fri,Lunch,2
|
224 |
+
8.58,1.92,Male,Yes,Fri,Lunch,1
|
225 |
+
15.98,3.0,Female,No,Fri,Lunch,3
|
226 |
+
13.42,1.58,Male,Yes,Fri,Lunch,2
|
227 |
+
16.27,2.5,Female,Yes,Fri,Lunch,2
|
228 |
+
10.09,2.0,Female,Yes,Fri,Lunch,2
|
229 |
+
20.45,3.0,Male,No,Sat,Dinner,4
|
230 |
+
13.28,2.72,Male,No,Sat,Dinner,2
|
231 |
+
22.12,2.88,Female,Yes,Sat,Dinner,2
|
232 |
+
24.01,2.0,Male,Yes,Sat,Dinner,4
|
233 |
+
15.69,3.0,Male,Yes,Sat,Dinner,3
|
234 |
+
11.61,3.39,Male,No,Sat,Dinner,2
|
235 |
+
10.77,1.47,Male,No,Sat,Dinner,2
|
236 |
+
15.53,3.0,Male,Yes,Sat,Dinner,2
|
237 |
+
10.07,1.25,Male,No,Sat,Dinner,2
|
238 |
+
12.6,1.0,Male,Yes,Sat,Dinner,2
|
239 |
+
32.83,1.17,Male,Yes,Sat,Dinner,2
|
240 |
+
35.83,4.67,Female,No,Sat,Dinner,3
|
241 |
+
29.03,5.92,Male,No,Sat,Dinner,3
|
242 |
+
27.18,2.0,Female,Yes,Sat,Dinner,2
|
243 |
+
22.67,2.0,Male,Yes,Sat,Dinner,2
|
244 |
+
17.82,1.75,Male,No,Sat,Dinner,2
|
245 |
+
18.78,3.0,Female,No,Thur,Dinner,2
|