Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import cv2 | |
| import numpy as np | |
| import pandas as pd | |
| from PIL import Image | |
| import torch | |
| from torchvision.transforms import Compose, Resize, ToTensor, Normalize | |
| from segment_anything import SamPredictor, sam_model_registry | |
| # Set Streamlit configuration | |
| st.set_page_config(page_title="Volume Estimator", layout="wide") | |
| st.title("π¦ Volume Estimation using SAM Segmentation + MiDaS Depth") | |
| # Load SAM and MiDaS models | |
| def load_models(): | |
| sam_checkpoint = "C:/Users/Administrator/Desktop/streamlit_tl/models/sam_vit_h_4b8939.pth" | |
| sam = sam_model_registry["vit_h"](checkpoint=sam_checkpoint).to("cuda" if torch.cuda.is_available() else "cpu") | |
| predictor = SamPredictor(sam) | |
| midas = torch.hub.load("intel-isl/MiDaS", "DPT_Large") | |
| midas.eval() | |
| midas_transform = Compose([ | |
| Resize(384), | |
| ToTensor(), | |
| Normalize(mean=[0.5]*3, std=[0.5]*3) | |
| ]) | |
| return predictor, midas, midas_transform | |
| predictor, midas_model, midas_transform = load_models() | |
| # Input source selection | |
| source_option = st.radio("Select input source", ("Upload Image", "Use Webcam")) | |
| uploaded_file = None | |
| image_pil = None | |
| if source_option == "Upload Image": | |
| uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
| if uploaded_file: | |
| image_pil = Image.open(uploaded_file).convert("RGB") | |
| elif source_option == "Use Webcam": | |
| run_camera = st.checkbox("Start Camera") | |
| if run_camera: | |
| cap = cv2.VideoCapture(0) | |
| stframe = st.empty() | |
| capture = False | |
| while run_camera and cap.isOpened(): | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| stframe.image(frame_rgb, caption="Live Camera Feed", channels="RGB") | |
| if st.button("πΈ Capture Frame"): | |
| image_pil = Image.fromarray(frame_rgb) | |
| run_camera = False | |
| cap.release() | |
| break | |
| # Continue processing if we have an image | |
| if image_pil: | |
| image_np = np.array(image_pil) | |
| img_h, img_w = image_np.shape[:2] | |
| st.image(image_pil, caption="Selected Image", use_container_width=True) | |
| # Real-world reference dimensions | |
| real_image_width_cm = 100 | |
| real_image_height_cm = 75 | |
| assumed_max_depth_cm = 100 | |
| pixel_to_cm_x = real_image_width_cm / img_w | |
| pixel_to_cm_y = real_image_height_cm / img_h | |
| # SAM Segmentation | |
| predictor.set_image(image_np) | |
| masks, _, _ = predictor.predict(multimask_output=False) | |
| # MiDaS Depth Estimation | |
| input_tensor = midas_transform(image_pil).unsqueeze(0) | |
| with torch.no_grad(): | |
| depth_prediction = midas_model(input_tensor).squeeze().cpu().numpy() | |
| depth_resized = cv2.resize(depth_prediction, (img_w, img_h)) | |
| # Object volume computation | |
| volume_data = [] | |
| for i, mask in enumerate(masks): | |
| mask_np = mask | |
| x, y, w, h = cv2.boundingRect(mask_np.astype(np.uint8)) | |
| width_px = w | |
| height_px = h | |
| width_cm = width_px * pixel_to_cm_x | |
| height_cm = height_px * pixel_to_cm_y | |
| depth_masked = depth_resized[mask_np > 0.5] | |
| if depth_masked.size == 0: | |
| continue | |
| normalized_depth = (depth_masked - np.min(depth_resized)) / (np.max(depth_resized) - np.min(depth_resized) + 1e-6) | |
| depth_cm = np.mean(normalized_depth) * assumed_max_depth_cm | |
| volume_cm3 = round(depth_cm * width_cm * height_cm, 2) | |
| volume_data.append({ | |
| "Object": f"Object #{i+1}", | |
| "Length (Depth)": f"{round(depth_cm, 2)} cm", | |
| "Breadth (Width)": f"{round(width_cm, 2)} cm", | |
| "Height": f"{round(height_cm, 2)} cm", | |
| "Volume": f"{volume_cm3} cmΒ³" | |
| }) | |
| # Display volume table | |
| if volume_data: | |
| df = pd.DataFrame(volume_data) | |
| st.markdown("### π Object Dimensions and Volume") | |
| st.dataframe(df) | |
| csv = df.to_csv(index=False).encode('utf-8') | |
| st.download_button("π Download Volume Table as CSV", csv, "object_volumes_with_units.csv", "text/csv") | |
| else: | |
| st.warning("π« No objects were segmented.") | |