|
import streamlit as st
|
|
import cv2
|
|
import numpy as np
|
|
import pandas as pd
|
|
from PIL import Image
|
|
import torch
|
|
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
|
|
from segment_anything import SamPredictor, sam_model_registry
|
|
|
|
|
|
st.set_page_config(page_title="Volume Estimator", layout="wide")
|
|
st.title("π¦ Volume Estimation using SAM Segmentation + MiDaS Depth")
|
|
|
|
|
|
@st.cache_resource
|
|
def load_models():
|
|
sam_checkpoint = "C:/Users/Administrator/Desktop/streamlit_tl/models/sam_vit_h_4b8939.pth"
|
|
sam = sam_model_registry["vit_h"](checkpoint=sam_checkpoint).to("cuda" if torch.cuda.is_available() else "cpu")
|
|
predictor = SamPredictor(sam)
|
|
|
|
midas = torch.hub.load("intel-isl/MiDaS", "DPT_Large")
|
|
midas.eval()
|
|
midas_transform = Compose([
|
|
Resize(384),
|
|
ToTensor(),
|
|
Normalize(mean=[0.5]*3, std=[0.5]*3)
|
|
])
|
|
return predictor, midas, midas_transform
|
|
|
|
predictor, midas_model, midas_transform = load_models()
|
|
|
|
|
|
source_option = st.radio("Select input source", ("Upload Image", "Use Webcam"))
|
|
|
|
uploaded_file = None
|
|
image_pil = None
|
|
|
|
if source_option == "Upload Image":
|
|
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
|
if uploaded_file:
|
|
image_pil = Image.open(uploaded_file).convert("RGB")
|
|
|
|
elif source_option == "Use Webcam":
|
|
run_camera = st.checkbox("Start Camera")
|
|
|
|
if run_camera:
|
|
cap = cv2.VideoCapture(0)
|
|
stframe = st.empty()
|
|
capture = False
|
|
|
|
while run_camera and cap.isOpened():
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
stframe.image(frame_rgb, caption="Live Camera Feed", channels="RGB")
|
|
|
|
if st.button("πΈ Capture Frame"):
|
|
image_pil = Image.fromarray(frame_rgb)
|
|
run_camera = False
|
|
cap.release()
|
|
break
|
|
|
|
|
|
if image_pil:
|
|
image_np = np.array(image_pil)
|
|
img_h, img_w = image_np.shape[:2]
|
|
st.image(image_pil, caption="Selected Image", use_container_width=True)
|
|
|
|
|
|
real_image_width_cm = 100
|
|
real_image_height_cm = 75
|
|
assumed_max_depth_cm = 100
|
|
|
|
pixel_to_cm_x = real_image_width_cm / img_w
|
|
pixel_to_cm_y = real_image_height_cm / img_h
|
|
|
|
|
|
predictor.set_image(image_np)
|
|
masks, _, _ = predictor.predict(multimask_output=False)
|
|
|
|
|
|
input_tensor = midas_transform(image_pil).unsqueeze(0)
|
|
with torch.no_grad():
|
|
depth_prediction = midas_model(input_tensor).squeeze().cpu().numpy()
|
|
depth_resized = cv2.resize(depth_prediction, (img_w, img_h))
|
|
|
|
|
|
volume_data = []
|
|
for i, mask in enumerate(masks):
|
|
mask_np = mask
|
|
x, y, w, h = cv2.boundingRect(mask_np.astype(np.uint8))
|
|
width_px = w
|
|
height_px = h
|
|
|
|
width_cm = width_px * pixel_to_cm_x
|
|
height_cm = height_px * pixel_to_cm_y
|
|
|
|
depth_masked = depth_resized[mask_np > 0.5]
|
|
|
|
if depth_masked.size == 0:
|
|
continue
|
|
|
|
normalized_depth = (depth_masked - np.min(depth_resized)) / (np.max(depth_resized) - np.min(depth_resized) + 1e-6)
|
|
depth_cm = np.mean(normalized_depth) * assumed_max_depth_cm
|
|
|
|
volume_cm3 = round(depth_cm * width_cm * height_cm, 2)
|
|
|
|
volume_data.append({
|
|
"Object": f"Object #{i+1}",
|
|
"Length (Depth)": f"{round(depth_cm, 2)} cm",
|
|
"Breadth (Width)": f"{round(width_cm, 2)} cm",
|
|
"Height": f"{round(height_cm, 2)} cm",
|
|
"Volume": f"{volume_cm3} cmΒ³"
|
|
})
|
|
|
|
|
|
if volume_data:
|
|
df = pd.DataFrame(volume_data)
|
|
st.markdown("### π Object Dimensions and Volume")
|
|
st.dataframe(df)
|
|
|
|
csv = df.to_csv(index=False).encode('utf-8')
|
|
st.download_button("π Download Volume Table as CSV", csv, "object_volumes_with_units.csv", "text/csv")
|
|
else:
|
|
st.warning("π« No objects were segmented.")
|
|
|