Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,22 +13,27 @@ import os
|
|
| 13 |
st.set_page_config(page_title="Volume Estimator", layout="wide")
|
| 14 |
st.title("Volume Estimation using SAM Segmentation + MiDaS Depth")
|
| 15 |
|
| 16 |
-
# Load SAM and MiDaS models
|
| 17 |
@st.cache_resource
|
| 18 |
def load_models():
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
| 20 |
checkpoint_url = "https://huggingface.co/HCMUE-Research/SAM-vit-h/resolve/main/sam_vit_h_4b8939.pth"
|
| 21 |
checkpoint_path = "sam_vit_h_4b8939.pth"
|
|
|
|
|
|
|
| 22 |
if not os.path.exists(checkpoint_path):
|
|
|
|
|
|
|
| 23 |
with open(checkpoint_path, "wb") as f:
|
| 24 |
-
f.write(
|
| 25 |
|
| 26 |
-
# Load SAM
|
| 27 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 28 |
sam = sam_model_registry["vit_h"](checkpoint=checkpoint_path).to(device)
|
| 29 |
predictor = SamPredictor(sam)
|
| 30 |
|
| 31 |
-
# Load MiDaS
|
| 32 |
midas = torch.hub.load("intel-isl/MiDaS", "DPT_Large")
|
| 33 |
midas.eval()
|
| 34 |
midas_transform = Compose([
|
|
@@ -38,6 +43,7 @@ def load_models():
|
|
| 38 |
])
|
| 39 |
return predictor, midas, midas_transform
|
| 40 |
|
|
|
|
| 41 |
predictor, midas_model, midas_transform = load_models()
|
| 42 |
|
| 43 |
# Input source selection
|
|
|
|
| 13 |
st.set_page_config(page_title="Volume Estimator", layout="wide")
|
| 14 |
st.title("Volume Estimation using SAM Segmentation + MiDaS Depth")
|
| 15 |
|
|
|
|
| 16 |
@st.cache_resource
|
| 17 |
def load_models():
|
| 18 |
+
import requests
|
| 19 |
+
import os
|
| 20 |
+
|
| 21 |
+
# ✅ Use Hugging Face public model file URL
|
| 22 |
checkpoint_url = "https://huggingface.co/HCMUE-Research/SAM-vit-h/resolve/main/sam_vit_h_4b8939.pth"
|
| 23 |
checkpoint_path = "sam_vit_h_4b8939.pth"
|
| 24 |
+
|
| 25 |
+
# Download only if not already present
|
| 26 |
if not os.path.exists(checkpoint_path):
|
| 27 |
+
st.info("Downloading SAM model checkpoint...")
|
| 28 |
+
response = requests.get(checkpoint_url)
|
| 29 |
with open(checkpoint_path, "wb") as f:
|
| 30 |
+
f.write(response.content)
|
| 31 |
|
|
|
|
| 32 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 33 |
sam = sam_model_registry["vit_h"](checkpoint=checkpoint_path).to(device)
|
| 34 |
predictor = SamPredictor(sam)
|
| 35 |
|
| 36 |
+
# Load MiDaS model
|
| 37 |
midas = torch.hub.load("intel-isl/MiDaS", "DPT_Large")
|
| 38 |
midas.eval()
|
| 39 |
midas_transform = Compose([
|
|
|
|
| 43 |
])
|
| 44 |
return predictor, midas, midas_transform
|
| 45 |
|
| 46 |
+
|
| 47 |
predictor, midas_model, midas_transform = load_models()
|
| 48 |
|
| 49 |
# Input source selection
|