Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| import numpy as np | |
| import cv2 | |
| from PIL import Image | |
| import pandas as pd | |
| from torchvision.transforms import Compose, Resize, ToTensor, Normalize | |
| from segment_anything import SamPredictor, sam_model_registry | |
| import os | |
| # Load SAM and MiDaS models | |
| def load_models(): | |
| sam_checkpoint = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth" | |
| if not os.path.exists(sam_checkpoint): | |
| raise FileNotFoundError("Please upload the SAM checkpoint file to the working directory.") | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| sam = sam_model_registry["vit_h"](checkpoint=sam_checkpoint).to(device) | |
| predictor = SamPredictor(sam) | |
| midas = torch.hub.load("intel-isl/MiDaS", "DPT_Large") | |
| midas.eval().to(device) | |
| midas_transform = Compose([ | |
| Resize(384), | |
| ToTensor(), | |
| Normalize(mean=[0.5]*3, std=[0.5]*3) | |
| ]) | |
| return predictor, midas, midas_transform | |
| predictor, midas_model, midas_transform = load_models() | |
| # Processing function | |
| def process_image(image_pil): | |
| image_np = np.array(image_pil) | |
| img_h, img_w = image_np.shape[:2] | |
| # Real-world reference dimensions (adjust as needed) | |
| real_image_width_cm = 100 | |
| real_image_height_cm = 75 | |
| assumed_max_depth_cm = 100 | |
| pixel_to_cm_x = real_image_width_cm / img_w | |
| pixel_to_cm_y = real_image_height_cm / img_h | |
| # SAM segmentation | |
| predictor.set_image(image_np) | |
| masks, _, _ = predictor.predict(multimask_output=False) | |
| # MiDaS depth estimation | |
| input_tensor = midas_transform(image_pil).unsqueeze(0).to(next(midas_model.parameters()).device) | |
| with torch.no_grad(): | |
| depth_prediction = midas_model(input_tensor).squeeze().cpu().numpy() | |
| depth_resized = cv2.resize(depth_prediction, (img_w, img_h)) | |
| # Object volume computation | |
| volume_data = [] | |
| for i, mask in enumerate(masks): | |
| x, y, w, h = cv2.boundingRect(mask.astype(np.uint8)) | |
| width_px = w | |
| height_px = h | |
| width_cm = width_px * pixel_to_cm_x | |
| height_cm = height_px * pixel_to_cm_y | |
| depth_masked = depth_resized[mask > 0.5] | |
| if depth_masked.size == 0: | |
| continue | |
| normalized_depth = (depth_masked - np.min(depth_resized)) / (np.max(depth_resized) - np.min(depth_resized) + 1e-6) | |
| depth_cm = np.mean(normalized_depth) * assumed_max_depth_cm | |
| volume_cm3 = round(depth_cm * width_cm * height_cm, 2) | |
| volume_data.append([ | |
| f"Object #{i+1}", | |
| round(depth_cm, 2), | |
| round(width_cm, 2), | |
| round(height_cm, 2), | |
| volume_cm3 | |
| ]) | |
| if not volume_data: | |
| return image_pil, "No objects segmented." | |
| df = pd.DataFrame(volume_data, columns=["Object", "Length (Depth) cm", "Breadth (Width) cm", "Height cm", "Volume cm³"]) | |
| return image_pil, df | |
| # Gradio Interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# 📦 Volume Estimation using SAM + MiDaS") | |
| with gr.Row(): | |
| image_input = gr.Image(type="pil", label="Upload Image") | |
| run_btn = gr.Button("Estimate Volume") | |
| with gr.Row(): | |
| output_image = gr.Image(label="Original Image") | |
| volume_table = gr.Dataframe(headers=["Object", "Length (Depth) cm", "Breadth (Width) cm", "Height cm", "Volume cm³"]) | |
| run_btn.click(fn=process_image, inputs=image_input, outputs=[output_image, volume_table]) | |
| demo.launch() | |