Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
import pandas as pd | |
from torchvision.transforms import Compose, Resize, ToTensor, Normalize | |
from segment_anything import SamPredictor, sam_model_registry | |
import os | |
# Load SAM and MiDaS models | |
def load_models(): | |
sam_checkpoint = "sam_vit_b_01ec64.pth" | |
if not os.path.exists(sam_checkpoint): | |
raise FileNotFoundError("Please upload the SAM checkpoint file to the working directory.") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
sam = sam_model_registry["vit_h"](checkpoint=sam_checkpoint).to(device) | |
predictor = SamPredictor(sam) | |
midas = torch.hub.load("intel-isl/MiDaS", "DPT_Large") | |
midas.eval().to(device) | |
midas_transform = Compose([ | |
Resize(384), | |
ToTensor(), | |
Normalize(mean=[0.5]*3, std=[0.5]*3) | |
]) | |
return predictor, midas, midas_transform | |
predictor, midas_model, midas_transform = load_models() | |
# Processing function | |
def process_image(image_pil): | |
image_np = np.array(image_pil) | |
img_h, img_w = image_np.shape[:2] | |
# Real-world reference dimensions (adjust as needed) | |
real_image_width_cm = 100 | |
real_image_height_cm = 75 | |
assumed_max_depth_cm = 100 | |
pixel_to_cm_x = real_image_width_cm / img_w | |
pixel_to_cm_y = real_image_height_cm / img_h | |
# SAM segmentation | |
predictor.set_image(image_np) | |
masks, _, _ = predictor.predict(multimask_output=False) | |
# MiDaS depth estimation | |
input_tensor = midas_transform(image_pil).unsqueeze(0).to(next(midas_model.parameters()).device) | |
with torch.no_grad(): | |
depth_prediction = midas_model(input_tensor).squeeze().cpu().numpy() | |
depth_resized = cv2.resize(depth_prediction, (img_w, img_h)) | |
# Object volume computation | |
volume_data = [] | |
for i, mask in enumerate(masks): | |
x, y, w, h = cv2.boundingRect(mask.astype(np.uint8)) | |
width_px = w | |
height_px = h | |
width_cm = width_px * pixel_to_cm_x | |
height_cm = height_px * pixel_to_cm_y | |
depth_masked = depth_resized[mask > 0.5] | |
if depth_masked.size == 0: | |
continue | |
normalized_depth = (depth_masked - np.min(depth_resized)) / (np.max(depth_resized) - np.min(depth_resized) + 1e-6) | |
depth_cm = np.mean(normalized_depth) * assumed_max_depth_cm | |
volume_cm3 = round(depth_cm * width_cm * height_cm, 2) | |
volume_data.append([ | |
f"Object #{i+1}", | |
round(depth_cm, 2), | |
round(width_cm, 2), | |
round(height_cm, 2), | |
volume_cm3 | |
]) | |
if not volume_data: | |
return image_pil, "No objects segmented." | |
df = pd.DataFrame(volume_data, columns=["Object", "Length (Depth) cm", "Breadth (Width) cm", "Height cm", "Volume cm³"]) | |
return image_pil, df | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# 📦 Volume Estimation using SAM + MiDaS") | |
with gr.Row(): | |
image_input = gr.Image(type="pil", label="Upload Image") | |
run_btn = gr.Button("Estimate Volume") | |
with gr.Row(): | |
output_image = gr.Image(label="Original Image") | |
volume_table = gr.Dataframe(headers=["Object", "Length (Depth) cm", "Breadth (Width) cm", "Height cm", "Volume cm³"]) | |
run_btn.click(fn=process_image, inputs=image_input, outputs=[output_image, volume_table]) | |
demo.launch() | |