Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,25 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
import numpy as np
|
4 |
-
import
|
5 |
from PIL import Image
|
6 |
-
import
|
7 |
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
# Set Streamlit configuration
|
12 |
-
st.set_page_config(page_title="Volume Estimator", layout="wide")
|
13 |
-
st.title("📦 Volume Estimation using SAM Segmentation + MiDaS Depth")
|
14 |
|
15 |
# Load SAM and MiDaS models
|
16 |
-
@st.cache_resource
|
17 |
def load_models():
|
18 |
-
sam_checkpoint = "
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
predictor = SamPredictor(sam)
|
21 |
|
22 |
midas = torch.hub.load("intel-isl/MiDaS", "DPT_Large")
|
23 |
-
midas.eval()
|
24 |
midas_transform = Compose([
|
25 |
Resize(384),
|
26 |
ToTensor(),
|
@@ -30,45 +29,12 @@ def load_models():
|
|
30 |
|
31 |
predictor, midas_model, midas_transform = load_models()
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
uploaded_file = None
|
37 |
-
image_pil = None
|
38 |
-
|
39 |
-
if source_option == "Upload Image":
|
40 |
-
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
41 |
-
if uploaded_file:
|
42 |
-
image_pil = Image.open(uploaded_file).convert("RGB")
|
43 |
-
|
44 |
-
elif source_option == "Use Webcam":
|
45 |
-
run_camera = st.checkbox("Start Camera")
|
46 |
-
|
47 |
-
if run_camera:
|
48 |
-
cap = cv2.VideoCapture(0)
|
49 |
-
stframe = st.empty()
|
50 |
-
capture = False
|
51 |
-
|
52 |
-
while run_camera and cap.isOpened():
|
53 |
-
ret, frame = cap.read()
|
54 |
-
if not ret:
|
55 |
-
break
|
56 |
-
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
57 |
-
stframe.image(frame_rgb, caption="Live Camera Feed", channels="RGB")
|
58 |
-
|
59 |
-
if st.button("📸 Capture Frame"):
|
60 |
-
image_pil = Image.fromarray(frame_rgb)
|
61 |
-
run_camera = False
|
62 |
-
cap.release()
|
63 |
-
break
|
64 |
-
|
65 |
-
# Continue processing if we have an image
|
66 |
-
if image_pil:
|
67 |
image_np = np.array(image_pil)
|
68 |
img_h, img_w = image_np.shape[:2]
|
69 |
-
st.image(image_pil, caption="Selected Image", use_container_width=True)
|
70 |
|
71 |
-
# Real-world reference dimensions
|
72 |
real_image_width_cm = 100
|
73 |
real_image_height_cm = 75
|
74 |
assumed_max_depth_cm = 100
|
@@ -76,12 +42,12 @@ if image_pil:
|
|
76 |
pixel_to_cm_x = real_image_width_cm / img_w
|
77 |
pixel_to_cm_y = real_image_height_cm / img_h
|
78 |
|
79 |
-
# SAM
|
80 |
predictor.set_image(image_np)
|
81 |
masks, _, _ = predictor.predict(multimask_output=False)
|
82 |
|
83 |
-
# MiDaS
|
84 |
-
input_tensor = midas_transform(image_pil).unsqueeze(0)
|
85 |
with torch.no_grad():
|
86 |
depth_prediction = midas_model(input_tensor).squeeze().cpu().numpy()
|
87 |
depth_resized = cv2.resize(depth_prediction, (img_w, img_h))
|
@@ -89,39 +55,43 @@ if image_pil:
|
|
89 |
# Object volume computation
|
90 |
volume_data = []
|
91 |
for i, mask in enumerate(masks):
|
92 |
-
|
93 |
-
x, y, w, h = cv2.boundingRect(mask_np.astype(np.uint8))
|
94 |
width_px = w
|
95 |
height_px = h
|
96 |
-
|
97 |
width_cm = width_px * pixel_to_cm_x
|
98 |
height_cm = height_px * pixel_to_cm_y
|
99 |
|
100 |
-
depth_masked = depth_resized[
|
101 |
-
|
102 |
if depth_masked.size == 0:
|
103 |
continue
|
104 |
|
105 |
normalized_depth = (depth_masked - np.min(depth_resized)) / (np.max(depth_resized) - np.min(depth_resized) + 1e-6)
|
106 |
depth_cm = np.mean(normalized_depth) * assumed_max_depth_cm
|
107 |
-
|
108 |
volume_cm3 = round(depth_cm * width_cm * height_cm, 2)
|
109 |
|
110 |
-
volume_data.append(
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
import numpy as np
|
4 |
+
import cv2
|
5 |
from PIL import Image
|
6 |
+
import pandas as pd
|
7 |
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
|
8 |
+
from segment_anything import SamPredictor, sam_model_registry
|
9 |
+
import os
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Load SAM and MiDaS models
|
|
|
12 |
def load_models():
|
13 |
+
sam_checkpoint = "sam_vit_h_4b8939.pth"
|
14 |
+
if not os.path.exists(sam_checkpoint):
|
15 |
+
raise FileNotFoundError("Please upload the SAM checkpoint file to the working directory.")
|
16 |
+
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
sam = sam_model_registry["vit_h"](checkpoint=sam_checkpoint).to(device)
|
19 |
predictor = SamPredictor(sam)
|
20 |
|
21 |
midas = torch.hub.load("intel-isl/MiDaS", "DPT_Large")
|
22 |
+
midas.eval().to(device)
|
23 |
midas_transform = Compose([
|
24 |
Resize(384),
|
25 |
ToTensor(),
|
|
|
29 |
|
30 |
predictor, midas_model, midas_transform = load_models()
|
31 |
|
32 |
+
# Processing function
|
33 |
+
def process_image(image_pil):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
image_np = np.array(image_pil)
|
35 |
img_h, img_w = image_np.shape[:2]
|
|
|
36 |
|
37 |
+
# Real-world reference dimensions (adjust as needed)
|
38 |
real_image_width_cm = 100
|
39 |
real_image_height_cm = 75
|
40 |
assumed_max_depth_cm = 100
|
|
|
42 |
pixel_to_cm_x = real_image_width_cm / img_w
|
43 |
pixel_to_cm_y = real_image_height_cm / img_h
|
44 |
|
45 |
+
# SAM segmentation
|
46 |
predictor.set_image(image_np)
|
47 |
masks, _, _ = predictor.predict(multimask_output=False)
|
48 |
|
49 |
+
# MiDaS depth estimation
|
50 |
+
input_tensor = midas_transform(image_pil).unsqueeze(0).to(next(midas_model.parameters()).device)
|
51 |
with torch.no_grad():
|
52 |
depth_prediction = midas_model(input_tensor).squeeze().cpu().numpy()
|
53 |
depth_resized = cv2.resize(depth_prediction, (img_w, img_h))
|
|
|
55 |
# Object volume computation
|
56 |
volume_data = []
|
57 |
for i, mask in enumerate(masks):
|
58 |
+
x, y, w, h = cv2.boundingRect(mask.astype(np.uint8))
|
|
|
59 |
width_px = w
|
60 |
height_px = h
|
|
|
61 |
width_cm = width_px * pixel_to_cm_x
|
62 |
height_cm = height_px * pixel_to_cm_y
|
63 |
|
64 |
+
depth_masked = depth_resized[mask > 0.5]
|
|
|
65 |
if depth_masked.size == 0:
|
66 |
continue
|
67 |
|
68 |
normalized_depth = (depth_masked - np.min(depth_resized)) / (np.max(depth_resized) - np.min(depth_resized) + 1e-6)
|
69 |
depth_cm = np.mean(normalized_depth) * assumed_max_depth_cm
|
|
|
70 |
volume_cm3 = round(depth_cm * width_cm * height_cm, 2)
|
71 |
|
72 |
+
volume_data.append([
|
73 |
+
f"Object #{i+1}",
|
74 |
+
round(depth_cm, 2),
|
75 |
+
round(width_cm, 2),
|
76 |
+
round(height_cm, 2),
|
77 |
+
volume_cm3
|
78 |
+
])
|
79 |
+
|
80 |
+
if not volume_data:
|
81 |
+
return image_pil, "No objects segmented."
|
82 |
+
|
83 |
+
df = pd.DataFrame(volume_data, columns=["Object", "Length (Depth) cm", "Breadth (Width) cm", "Height cm", "Volume cm³"])
|
84 |
+
return image_pil, df
|
85 |
+
|
86 |
+
# Gradio Interface
|
87 |
+
with gr.Blocks() as demo:
|
88 |
+
gr.Markdown("# 📦 Volume Estimation using SAM + MiDaS")
|
89 |
+
with gr.Row():
|
90 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
91 |
+
run_btn = gr.Button("Estimate Volume")
|
92 |
+
with gr.Row():
|
93 |
+
output_image = gr.Image(label="Original Image")
|
94 |
+
volume_table = gr.Dataframe(headers=["Object", "Length (Depth) cm", "Breadth (Width) cm", "Height cm", "Volume cm³"])
|
95 |
+
run_btn.click(fn=process_image, inputs=image_input, outputs=[output_image, volume_table])
|
96 |
+
|
97 |
+
demo.launch()
|