Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,73 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
)
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
gr.
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
from pandasai import SmartDataframe
|
5 |
+
from pandasai.llm import OpenAI
|
6 |
+
from PIL import Image
|
7 |
+
import base64
|
8 |
+
from io import BytesIO
|
9 |
+
|
10 |
+
def ask(query, file, api_token):
|
11 |
+
data = pd.read_csv(file, index_col=0)
|
12 |
+
llm = OpenAI(api_token=api_token)
|
13 |
+
df = SmartDataframe(data, config={"llm": llm})
|
14 |
+
result = df.chat(query)
|
15 |
+
if isinstance(result, str) and result.endswith('.png'):
|
16 |
+
# Open the image file
|
17 |
+
img = Image.open('exports/charts/temp_chart.png')
|
18 |
+
|
19 |
+
# Convert the PIL Image to a base64 encoded string
|
20 |
+
buffered = BytesIO()
|
21 |
+
img.save(buffered, format="PNG")
|
22 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
23 |
+
|
24 |
+
# Construct the HTML string to display the image
|
25 |
+
html = f"<img src='data:image/png;base64,{img_str}' alt='Generated Image' style='width:100%;'>"
|
26 |
+
return html
|
27 |
+
elif isinstance(result, pd.DataFrame):
|
28 |
+
html_table = result.to_html()
|
29 |
+
return html_table
|
30 |
+
else:
|
31 |
+
return result
|
32 |
+
|
33 |
+
def on_file_upload(file, api_token):
|
34 |
+
data = pd.read_csv(file, index_col=0)
|
35 |
+
llm = OpenAI(api_token=api_token)
|
36 |
+
df = SmartDataframe(data, config={"llm": llm})
|
37 |
+
result = df.chat('What are the name of my columns')
|
38 |
+
return result
|
39 |
+
|
40 |
+
with gr.Blocks() as demo:
|
41 |
+
headers = gr.Markdown("<div style='text-align: center;'><h1> This is a project from Chasers using Pandas AI</h1></div>")
|
42 |
+
|
43 |
+
with gr.Row():
|
44 |
+
# First column for the first image
|
45 |
+
with gr.Column():
|
46 |
+
gr.HTML("""
|
47 |
+
<img src="https://d1b66s7evqera.cloudfront.net/f8d9b474-d1d2-4931-b38d-c5f918b8dc82/images/Chasers320x132.png?61554cbec993ea37a9d52399a0a0d3cd" width="320">
|
48 |
+
""")
|
49 |
+
|
50 |
+
# Second column for the clickable image
|
51 |
+
with gr.Column():
|
52 |
+
gr.HTML("""
|
53 |
+
<a href='https://pandas-ai.com/' target='_blank'>
|
54 |
+
<img src="https://framerusercontent.com/images/tDg1U6HZYYK3azrDbdVXLhPkOlk.png" width="150" style="opacity: 0.3";>
|
55 |
+
</a>
|
56 |
+
""")
|
57 |
+
|
58 |
+
api_token_input = gr.Textbox(lines=1, label="Enter your API token")
|
59 |
+
file_input = gr.File()
|
60 |
+
upload_button = gr.Button("Process Uploaded File")
|
61 |
+
upload_message = gr.Label("")
|
62 |
+
upload_button.click(on_file_upload, inputs=[file_input, api_token_input], outputs=[upload_message])
|
63 |
+
query_input = gr.Textbox(lines=2, label="Use exactly the name of the columns in your querys")
|
64 |
+
output_html = gr.HTML()
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
# Button to trigger the ask function
|
69 |
+
submit_button = gr.Button("Submit")
|
70 |
+
submit_button.click(ask, inputs=[query_input, file_input, api_token_input], outputs=[output_html])
|
71 |
+
|
72 |
+
demo.launch()
|
73 |
+
|