Spaces:
Sleeping
Sleeping
File size: 2,402 Bytes
eb450e3 7515381 eb450e3 09742af eb450e3 162ed73 eb450e3 162ed73 eb450e3 162ed73 09742af 162ed73 eb450e3 162ed73 09742af eb450e3 162ed73 eb450e3 162ed73 09742af 162ed73 09742af 162ed73 09742af 162ed73 09742af eb450e3 91e7ac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import gradio as gr
from huggingface_hub import InferenceClient
import time
client = InferenceClient("lambdaindie/lambdai")
def respond(message, history, system_message, max_tokens, temperature, top_p):
# Build base message history
messages = [{"role": "system", "content": system_message}] if system_message else []
for user, assistant in history:
if user:
messages.append({"role": "user", "content": user})
if assistant:
messages.append({"role": "assistant", "content": assistant})
# Phase 1 — Thinking aloud (reasoning step)
thinking_prompt = messages + [
{
"role": "user",
"content": f"{message}\n\nThink step-by-step before answering."
}
]
reasoning = ""
yield "**Thinking...**\n```markdown\n```" # Trigger gray markdown block
for chunk in client.chat_completion(
thinking_prompt,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = chunk.choices[0].delta.content or ""
reasoning += token
yield f"**Thinking...**\n```markdown\n{reasoning.strip()}```"
time.sleep(0.5) # Optional dramatic pause
# Phase 2 — Final answer
final_prompt = messages + [
{"role": "user", "content": message},
{"role": "assistant", "content": reasoning.strip()},
{"role": "user", "content": "Now answer based on your reasoning above."}
]
final_answer = ""
for chunk in client.chat_completion(
final_prompt,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = chunk.choices[0].delta.content or ""
final_answer += token
yield final_answer.strip()
demo = gr.ChatInterface(
respond,
title="LENIRΛ",
theme=gr.themes.Base(primary_hue="gray", font=["JetBrains Mono", "monospace"]),
additional_inputs=[
gr.Textbox(
value="You are a concise, logical AI that explains its reasoning clearly before answering.",
label="System Message"
),
gr.Slider(64, 2048, value=512, step=1, label="Max Tokens"),
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
]
)
if __name__ == "__main__":
demo.launch() |