Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
client = InferenceClient("lambdaindie/lambda") | |
css = r""" | |
/* Fonte e cores gerais */ | |
* { font-family: 'JetBrains Mono', monospace; } | |
.gradio-container { background-color: #0d0d0d; color: #e0e0e0; } | |
/* Inputs e chat bubbles */ | |
textarea, input, .block, .wrap, .chatbot, .scroll-hide { | |
background-color: #1a1a1a !important; | |
color: #e0e0e0 !important; | |
border: 1px solid #333 !important; | |
border-radius: 12px; | |
} | |
/* Botão com pulse animation */ | |
@keyframes pulse { | |
0% { transform: scale(1); box-shadow: 0 0 0 0 rgba(255,255,255,0.5); } | |
70% { transform: scale(1.05); box-shadow: 0 0 0 10px rgba(255,255,255,0); } | |
100% { transform: scale(1); box-shadow: 0 0 0 0 rgba(255,255,255,0); } | |
} | |
button.pulse { | |
background-color: #272727 !important; | |
border: 1px solid #444 !important; | |
color: #e0e0e0 !important; | |
border-radius: 12px; | |
animation: pulse 2s infinite; | |
} | |
/* Hover no botão */ | |
button.pulse:hover { | |
background-color: #444 !important; | |
} | |
/* Spinner de thinking */ | |
@keyframes spin { | |
0% { transform: rotate(0deg); } | |
100% { transform: rotate(360deg); } | |
} | |
.loader { | |
border: 3px solid #2b2b2b; | |
border-top: 3px solid #e0e0e0; | |
border-radius: 50%; | |
width: 18px; | |
height: 18px; | |
animation: spin 1s linear infinite; | |
display: inline-block; | |
margin-right: 8px; | |
vertical-align: middle; | |
} | |
/* Markdown de thinking dentro do chat */ | |
.thinking-html { | |
background-color: #2b2b2b; | |
padding: 10px; | |
border-radius: 8px; | |
margin-bottom: 8px; | |
font-style: italic; | |
color: #aaaaaa; | |
display: flex; | |
align-items: center; | |
} | |
""" | |
with gr.Blocks(css=css, theme=gr.themes.Base()) as demo: | |
gr.Markdown("<h1 style='text-align:center;color:#e0e0e0;'>🅻 Lambdai-v1-1B Chat</h1>") | |
chatbot = gr.Chatbot(elem_id="chatbot", height=480, render_markdown=True, show_copy_button=True) | |
with gr.Row(): | |
system_message = gr.Textbox(value="You are a helpful AI assistant.", label="System message", lines=1) | |
with gr.Row(): | |
max_tokens = gr.Slider(128, 2048, value=512, step=1, label="Max tokens") | |
temperature = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top‑p") | |
with gr.Row(): | |
user_input = gr.Textbox(show_label=False, placeholder="Type your message here...", lines=2) | |
send_button = gr.Button("Λ Think", elem_classes="pulse") | |
def respond(message, chat_history, system_message, max_tokens, temperature, top_p): | |
# 1) exibe o spinner + texto de thinking | |
thinking_html = ( | |
f"<div class='thinking-html'>" | |
f"<div class='loader'></div>" | |
f"Thinking… generating reasoning path…" | |
f"</div>" | |
) | |
yield chat_history + [[message, thinking_html]] | |
# 2) prepara payload para API | |
messages = [{"role": "system", "content": system_message}] | |
for u, a in chat_history: | |
if u: messages.append({"role":"user", "content":u}) | |
if a: messages.append({"role":"assistant","content":a}) | |
messages.append({"role": "user", "content": message}) | |
# 3) chama streaming da API | |
response = "" | |
for chunk in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
stream=True | |
): | |
delta = chunk.choices[0].delta.content or "" | |
response += delta | |
yield chat_history + [[message, response]] | |
send_button.click( | |
fn=respond, | |
inputs=[user_input, chatbot, system_message, max_tokens, temperature, top_p], | |
outputs=chatbot | |
) | |
demo.launch() |