lambdai / app.py
mariusjabami's picture
Update app.py
e86214a verified
raw
history blame
3.78 kB
import gradio as gr
from huggingface_hub import InferenceClient
client = InferenceClient("lambdaindie/lambda")
css = r"""
/* Fonte e cores gerais */
* { font-family: 'JetBrains Mono', monospace; }
.gradio-container { background-color: #0d0d0d; color: #e0e0e0; }
/* Inputs e chat bubbles */
textarea, input, .block, .wrap, .chatbot, .scroll-hide {
background-color: #1a1a1a !important;
color: #e0e0e0 !important;
border: 1px solid #333 !important;
border-radius: 12px;
}
/* Botão com pulse animation */
@keyframes pulse {
0% { transform: scale(1); box-shadow: 0 0 0 0 rgba(255,255,255,0.5); }
70% { transform: scale(1.05); box-shadow: 0 0 0 10px rgba(255,255,255,0); }
100% { transform: scale(1); box-shadow: 0 0 0 0 rgba(255,255,255,0); }
}
button.pulse {
background-color: #272727 !important;
border: 1px solid #444 !important;
color: #e0e0e0 !important;
border-radius: 12px;
animation: pulse 2s infinite;
}
/* Hover no botão */
button.pulse:hover {
background-color: #444 !important;
}
/* Spinner de thinking */
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
.loader {
border: 3px solid #2b2b2b;
border-top: 3px solid #e0e0e0;
border-radius: 50%;
width: 18px;
height: 18px;
animation: spin 1s linear infinite;
display: inline-block;
margin-right: 8px;
vertical-align: middle;
}
/* Markdown de thinking dentro do chat */
.thinking-html {
background-color: #2b2b2b;
padding: 10px;
border-radius: 8px;
margin-bottom: 8px;
font-style: italic;
color: #aaaaaa;
display: flex;
align-items: center;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Base()) as demo:
gr.Markdown("<h1 style='text-align:center;color:#e0e0e0;'>🅻 Lambdai-v1-1B Chat</h1>")
chatbot = gr.Chatbot(elem_id="chatbot", height=480, render_markdown=True, show_copy_button=True)
with gr.Row():
system_message = gr.Textbox(value="You are a helpful AI assistant.", label="System message", lines=1)
with gr.Row():
max_tokens = gr.Slider(128, 2048, value=512, step=1, label="Max tokens")
temperature = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top‑p")
with gr.Row():
user_input = gr.Textbox(show_label=False, placeholder="Type your message here...", lines=2)
send_button = gr.Button("Λ Think", elem_classes="pulse")
def respond(message, chat_history, system_message, max_tokens, temperature, top_p):
# 1) exibe o spinner + texto de thinking
thinking_html = (
f"<div class='thinking-html'>"
f"<div class='loader'></div>"
f"Thinking… generating reasoning path…"
f"</div>"
)
yield chat_history + [[message, thinking_html]]
# 2) prepara payload para API
messages = [{"role": "system", "content": system_message}]
for u, a in chat_history:
if u: messages.append({"role":"user", "content":u})
if a: messages.append({"role":"assistant","content":a})
messages.append({"role": "user", "content": message})
# 3) chama streaming da API
response = ""
for chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True
):
delta = chunk.choices[0].delta.content or ""
response += delta
yield chat_history + [[message, response]]
send_button.click(
fn=respond,
inputs=[user_input, chatbot, system_message, max_tokens, temperature, top_p],
outputs=chatbot
)
demo.launch()