Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
3 |
import time
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
css = """
|
8 |
@import url('https://fonts.googleapis.com/css2?family=JetBrains+Mono&display=swap');
|
9 |
-
|
10 |
-
|
11 |
-
font-family: 'JetBrains Mono', monospace !important;
|
12 |
-
}
|
13 |
-
|
14 |
-
body {
|
15 |
-
background-color: #111;
|
16 |
-
color: #e0e0e0;
|
17 |
-
}
|
18 |
-
|
19 |
.markdown-think {
|
20 |
background-color: #1e1e1e;
|
21 |
border-left: 4px solid #555;
|
@@ -25,7 +24,6 @@ body {
|
|
25 |
white-space: pre-wrap;
|
26 |
animation: pulse 1.5s infinite ease-in-out;
|
27 |
}
|
28 |
-
|
29 |
@keyframes pulse {
|
30 |
0% { opacity: 0.6; }
|
31 |
50% { opacity: 1.0; }
|
@@ -42,54 +40,55 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
42 |
if assistant:
|
43 |
messages.append({"role": "assistant", "content": assistant})
|
44 |
|
45 |
-
thinking_prompt = messages + [{
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
49 |
|
50 |
reasoning = ""
|
51 |
yield '<div class="markdown-think">Thinking...</div>'
|
52 |
-
|
53 |
start = time.time()
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
max_tokens
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
)
|
62 |
-
|
|
|
|
|
63 |
reasoning += token
|
64 |
-
|
65 |
-
yield styled_thought
|
66 |
|
67 |
elapsed = time.time() - start
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
<div style="margin-top:12px;padding:8px 12px;background-color:#222;border-left:4px solid #888;
|
71 |
-
font-family:'JetBrains Mono', monospace;color:#ccc;font-size:14px;">
|
72 |
-
Pensou por {elapsed:.1f} segundos
|
73 |
-
</div>
|
74 |
-
"""
|
75 |
-
|
76 |
-
time.sleep(2)
|
77 |
-
|
78 |
final_prompt = messages + [
|
79 |
{"role": "user", "content": message},
|
80 |
{"role": "assistant", "content": reasoning.strip()},
|
81 |
-
{"role": "user", "content": "
|
82 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
final_answer = ""
|
85 |
-
for
|
86 |
-
final_prompt,
|
87 |
-
max_tokens=max_tokens,
|
88 |
-
stream=True,
|
89 |
-
temperature=temperature,
|
90 |
-
top_p=top_p,
|
91 |
-
):
|
92 |
-
token = chunk.choices[0].delta.content or ""
|
93 |
final_answer += token
|
94 |
yield final_answer.strip()
|
95 |
|
@@ -99,8 +98,7 @@ demo = gr.ChatInterface(
|
|
99 |
theme=gr.themes.Base(),
|
100 |
css=css,
|
101 |
additional_inputs=[
|
102 |
-
gr.Textbox(value="",
|
103 |
-
label="System Message"),
|
104 |
gr.Slider(64, 2048, value=512, step=1, label="Max Tokens"),
|
105 |
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
|
106 |
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
3 |
+
import torch
|
4 |
+
import threading
|
5 |
import time
|
6 |
|
7 |
+
model_id = "lambdaindie/lambdai"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
|
10 |
+
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
model.to(device)
|
13 |
|
14 |
css = """
|
15 |
@import url('https://fonts.googleapis.com/css2?family=JetBrains+Mono&display=swap');
|
16 |
+
* { font-family: 'JetBrains Mono', monospace !important; }
|
17 |
+
body { background-color: #111; color: #e0e0e0; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
.markdown-think {
|
19 |
background-color: #1e1e1e;
|
20 |
border-left: 4px solid #555;
|
|
|
24 |
white-space: pre-wrap;
|
25 |
animation: pulse 1.5s infinite ease-in-out;
|
26 |
}
|
|
|
27 |
@keyframes pulse {
|
28 |
0% { opacity: 0.6; }
|
29 |
50% { opacity: 1.0; }
|
|
|
40 |
if assistant:
|
41 |
messages.append({"role": "assistant", "content": assistant})
|
42 |
|
43 |
+
thinking_prompt = messages + [{"role": "user", "content": f"{message}\n\nThink step-by-step."}]
|
44 |
+
prompt = tokenizer.apply_chat_template(thinking_prompt, tokenize=False, add_generation_prompt=True)
|
45 |
+
|
46 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
47 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
48 |
|
49 |
reasoning = ""
|
50 |
yield '<div class="markdown-think">Thinking...</div>'
|
|
|
51 |
start = time.time()
|
52 |
|
53 |
+
thread = threading.Thread(target=model.generate, kwargs={
|
54 |
+
"inputs": inputs["input_ids"],
|
55 |
+
"max_new_tokens": max_tokens,
|
56 |
+
"temperature": temperature,
|
57 |
+
"top_p": top_p,
|
58 |
+
"streamer": streamer,
|
59 |
+
})
|
60 |
+
thread.start()
|
61 |
+
|
62 |
+
for token in streamer:
|
63 |
reasoning += token
|
64 |
+
yield f'<div class="markdown-think">{reasoning.strip()}</div>'
|
|
|
65 |
|
66 |
elapsed = time.time() - start
|
67 |
+
yield f"""<div style="margin-top:12px;padding:8px 12px;background-color:#222;border-left:4px solid #888;
|
68 |
+
font-family:'JetBrains Mono', monospace;color:#ccc;font-size:14px;">
|
69 |
+
Pensou por {elapsed:.1f} segundos</div>"""
|
70 |
|
71 |
+
# Segunda etapa: resposta final
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
final_prompt = messages + [
|
73 |
{"role": "user", "content": message},
|
74 |
{"role": "assistant", "content": reasoning.strip()},
|
75 |
+
{"role": "user", "content": "Agora responda baseado nisso."}
|
76 |
]
|
77 |
+
prompt2 = tokenizer.apply_chat_template(final_prompt, tokenize=False, add_generation_prompt=True)
|
78 |
+
inputs2 = tokenizer(prompt2, return_tensors="pt").to(device)
|
79 |
+
streamer2 = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
80 |
+
|
81 |
+
thread2 = threading.Thread(target=model.generate, kwargs={
|
82 |
+
"inputs": inputs2["input_ids"],
|
83 |
+
"max_new_tokens": max_tokens,
|
84 |
+
"temperature": temperature,
|
85 |
+
"top_p": top_p,
|
86 |
+
"streamer": streamer2,
|
87 |
+
})
|
88 |
+
thread2.start()
|
89 |
|
90 |
final_answer = ""
|
91 |
+
for token in streamer2:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
final_answer += token
|
93 |
yield final_answer.strip()
|
94 |
|
|
|
98 |
theme=gr.themes.Base(),
|
99 |
css=css,
|
100 |
additional_inputs=[
|
101 |
+
gr.Textbox(value="", label="System Message"),
|
|
|
102 |
gr.Slider(64, 2048, value=512, step=1, label="Max Tokens"),
|
103 |
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
|
104 |
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
|