Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,31 +2,30 @@ import gradio as gr
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import time
|
4 |
|
5 |
-
|
6 |
-
chat_client = InferenceClient("lambdaindie/lambdai")
|
7 |
-
image_client = InferenceClient("stabilityai/stable-diffusion-2")
|
8 |
|
9 |
-
# CSS com JetBrains Mono for莽ado
|
10 |
css = """
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
body {
|
12 |
-
font-family: 'JetBrains Mono', monospace;
|
13 |
background-color: #111;
|
14 |
color: #e0e0e0;
|
15 |
}
|
16 |
-
|
17 |
-
background-color: #181818 !important;
|
18 |
-
color: #fff !important;
|
19 |
-
font-family: 'JetBrains Mono', monospace;
|
20 |
-
border-radius: 8px;
|
21 |
-
}
|
22 |
.markdown-think {
|
23 |
background-color: #1e1e1e;
|
24 |
border-left: 4px solid #555;
|
25 |
padding: 10px;
|
26 |
margin-bottom: 8px;
|
27 |
font-style: italic;
|
|
|
28 |
animation: pulse 1.5s infinite ease-in-out;
|
29 |
}
|
|
|
30 |
@keyframes pulse {
|
31 |
0% { opacity: 0.6; }
|
32 |
50% { opacity: 1.0; }
|
@@ -43,14 +42,15 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
43 |
if assistant:
|
44 |
messages.append({"role": "assistant", "content": assistant})
|
45 |
|
46 |
-
thinking_prompt = messages + [
|
47 |
-
|
48 |
-
|
|
|
49 |
|
50 |
reasoning = ""
|
51 |
yield '<div class="markdown-think">Thinking...</div>'
|
52 |
|
53 |
-
for chunk in
|
54 |
thinking_prompt,
|
55 |
max_tokens=max_tokens,
|
56 |
stream=True,
|
@@ -59,7 +59,8 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
59 |
):
|
60 |
token = chunk.choices[0].delta.content or ""
|
61 |
reasoning += token
|
62 |
-
|
|
|
63 |
|
64 |
time.sleep(0.5)
|
65 |
|
@@ -70,7 +71,7 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
70 |
]
|
71 |
|
72 |
final_answer = ""
|
73 |
-
for chunk in
|
74 |
final_prompt,
|
75 |
max_tokens=max_tokens,
|
76 |
stream=True,
|
@@ -81,34 +82,19 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
81 |
final_answer += token
|
82 |
yield final_answer.strip()
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
value="You are a concise, logical AI that explains its reasoning clearly before answering.",
|
98 |
-
label="System Message"
|
99 |
-
),
|
100 |
-
gr.Slider(64, 2048, value=512, step=1, label="Max Tokens"),
|
101 |
-
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
|
102 |
-
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
|
103 |
-
]
|
104 |
-
)
|
105 |
-
|
106 |
-
with gr.Tab("Image Generator"):
|
107 |
-
gr.Markdown("### Generate an image from a prompt")
|
108 |
-
prompt = gr.Textbox(label="Prompt")
|
109 |
-
output = gr.Image(type="pil")
|
110 |
-
btn = gr.Button("Generate")
|
111 |
-
btn.click(fn=generate_image, inputs=prompt, outputs=output)
|
112 |
|
113 |
if __name__ == "__main__":
|
114 |
demo.launch()
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import time
|
4 |
|
5 |
+
client = InferenceClient("lambdaindie/lambdai")
|
|
|
|
|
6 |
|
|
|
7 |
css = """
|
8 |
+
@import url('https://fonts.googleapis.com/css2?family=JetBrains+Mono&display=swap');
|
9 |
+
|
10 |
+
* {
|
11 |
+
font-family: 'JetBrains Mono', monospace !important;
|
12 |
+
}
|
13 |
+
|
14 |
body {
|
|
|
15 |
background-color: #111;
|
16 |
color: #e0e0e0;
|
17 |
}
|
18 |
+
|
|
|
|
|
|
|
|
|
|
|
19 |
.markdown-think {
|
20 |
background-color: #1e1e1e;
|
21 |
border-left: 4px solid #555;
|
22 |
padding: 10px;
|
23 |
margin-bottom: 8px;
|
24 |
font-style: italic;
|
25 |
+
white-space: pre-wrap;
|
26 |
animation: pulse 1.5s infinite ease-in-out;
|
27 |
}
|
28 |
+
|
29 |
@keyframes pulse {
|
30 |
0% { opacity: 0.6; }
|
31 |
50% { opacity: 1.0; }
|
|
|
42 |
if assistant:
|
43 |
messages.append({"role": "assistant", "content": assistant})
|
44 |
|
45 |
+
thinking_prompt = messages + [{
|
46 |
+
"role": "user",
|
47 |
+
"content": f"{message}\n\nThinking step-by-step before answering."
|
48 |
+
}]
|
49 |
|
50 |
reasoning = ""
|
51 |
yield '<div class="markdown-think">Thinking...</div>'
|
52 |
|
53 |
+
for chunk in client.chat_completion(
|
54 |
thinking_prompt,
|
55 |
max_tokens=max_tokens,
|
56 |
stream=True,
|
|
|
59 |
):
|
60 |
token = chunk.choices[0].delta.content or ""
|
61 |
reasoning += token
|
62 |
+
styled_thought = f'<div class="markdown-think">{reasoning.strip()}</div>'
|
63 |
+
yield styled_thought
|
64 |
|
65 |
time.sleep(0.5)
|
66 |
|
|
|
71 |
]
|
72 |
|
73 |
final_answer = ""
|
74 |
+
for chunk in client.chat_completion(
|
75 |
final_prompt,
|
76 |
max_tokens=max_tokens,
|
77 |
stream=True,
|
|
|
82 |
final_answer += token
|
83 |
yield final_answer.strip()
|
84 |
|
85 |
+
demo = gr.ChatInterface(
|
86 |
+
fn=respond,
|
87 |
+
title="位ambdAI",
|
88 |
+
theme=gr.themes.Base(),
|
89 |
+
css=css,
|
90 |
+
additional_inputs=[
|
91 |
+
gr.Textbox(value="You are a concise, logical AI that explains its reasoning clearly before answering.",
|
92 |
+
label="System Message"),
|
93 |
+
gr.Slider(64, 2048, value=512, step=1, label="Max Tokens"),
|
94 |
+
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
|
95 |
+
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
|
96 |
+
]
|
97 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
if __name__ == "__main__":
|
100 |
demo.launch()
|