import os import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("lambdaindie/lambdai", token=os.environ["HF_TOKEN"]) def respond(message, history, system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] if system_message else [] for user, assistant in history: if user: messages.append({"role": "user", "content": user}) if assistant: messages.append({"role": "assistant", "content": assistant}) messages.append({"role": "user", "content": message}) response = "" for chunk in client.text_generation( messages, max_new_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = chunk.choices[0].delta.content response += token yield response with gr.Blocks() as demo: gr.Markdown("# 🧠 lambdai — Chat Demo") chatbot = gr.Chatbot() with gr.Row(): system_msg = gr.Textbox(label="System message", placeholder="e.g. You are a helpful assistant.") with gr.Row(): max_tokens = gr.Slider(1, 2048, value=512, step=1, label="Max tokens") temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p") msg = gr.Textbox(placeholder="Ask something...", label="Your message") state = gr.State([]) def user_submit(user_message, history): return "", history + [[user_message, None]] def generate_response(message, history, sys_msg, max_tokens, temperature, top_p): gen = respond(message, history, sys_msg, max_tokens, temperature, top_p) return gen, history msg.submit(user_submit, [msg, state], [msg, state], queue=False).then( generate_response, [msg, state, system_msg, max_tokens, temperature, top_p], [chatbot, state] ) if __name__ == "__main__": demo.launch()