Commit
·
28aae69
1
Parent(s):
524b123
added dependency graph visualizations
Browse files- app.py +26 -7
- graph_visualizations.py +522 -0
app.py
CHANGED
@@ -5,7 +5,8 @@ import re
|
|
5 |
from task_visualizations import TaskVisualizations
|
6 |
import plotly.graph_objects as go
|
7 |
from functools import partial
|
8 |
-
from text_visualization import WordCloudExtractor,
|
|
|
9 |
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
|
@@ -56,7 +57,15 @@ def setup_repository_representations_tab(repos, representation_types):
|
|
56 |
|
57 |
wordcloud_dict = get_representation_wordclouds(representation_types, repos_df)
|
58 |
gr.Markdown("## Wordclouds")
|
59 |
-
gr.Gallery(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
gr.Markdown("Select a repository and two representation types to compare them.")
|
62 |
with gr.Row():
|
@@ -115,8 +124,11 @@ def load_embeddings_intro_description():
|
|
115 |
In the first scatterplot we display PapersWithCode tasks that are colored by area.
|
116 |
"""
|
117 |
|
|
|
118 |
def load_embeddings_description():
|
119 |
return
|
|
|
|
|
120 |
## main
|
121 |
repos_df = load_repo_df(AppConfig.repo_representations_path)
|
122 |
repos = list(repos_df["repo_name"].unique())
|
@@ -135,8 +147,7 @@ embedding_visualizer = EmbeddingVisualizer(display_df=display_df)
|
|
135 |
|
136 |
descriptions = {
|
137 |
"intro": load_embeddings_intro_description(),
|
138 |
-
|
139 |
-
"Basic representations": """Now we show the embeddings of tasks and repos, using various texts or representations.
|
140 |
|
141 |
The fact that selected code and/or dependency signatures (containing mostly repo's file names) are dissimilar from task names
|
142 |
should not be surprising. For our problem this illustrates the fact that these representations work poorly for retrieval.
|
@@ -151,10 +162,12 @@ descriptions = {
|
|
151 |
|
152 |
Below we can also see embeddings of task names with MPNet after dimensionality reduction with UMAP.
|
153 |
MPNet, a sentence-transformer model, the embeddings visibly separate tasks by area.
|
154 |
-
"""
|
155 |
}
|
156 |
|
157 |
with gr.Blocks() as demo:
|
|
|
|
|
158 |
with gr.Tab("Explore Repository Embeddings"):
|
159 |
|
160 |
tab_elems = [
|
@@ -163,8 +176,14 @@ with gr.Blocks() as demo:
|
|
163 |
gr.Plot(embedding_visualizer.make_task_area_scatterplot()),
|
164 |
]
|
165 |
|
166 |
-
embedding_plots = embedding_visualizer.make_embedding_plots(
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
tab_elems.append(gr.Markdown(f"## {plot_name}"))
|
169 |
if descriptions.get(plot_name):
|
170 |
tab_elems.append(gr.Markdown(descriptions[plot_name]))
|
|
|
5 |
from task_visualizations import TaskVisualizations
|
6 |
import plotly.graph_objects as go
|
7 |
from functools import partial
|
8 |
+
from text_visualization import WordCloudExtractor, EmbeddingVisualizer
|
9 |
+
from graph_visualizations import graph_tab
|
10 |
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
|
|
|
57 |
|
58 |
wordcloud_dict = get_representation_wordclouds(representation_types, repos_df)
|
59 |
gr.Markdown("## Wordclouds")
|
60 |
+
gr.Gallery(
|
61 |
+
[
|
62 |
+
(wordcloud, representation_type)
|
63 |
+
for representation_type, wordcloud in wordcloud_dict.items()
|
64 |
+
],
|
65 |
+
columns=[3],
|
66 |
+
rows=[4],
|
67 |
+
height=300,
|
68 |
+
)
|
69 |
|
70 |
gr.Markdown("Select a repository and two representation types to compare them.")
|
71 |
with gr.Row():
|
|
|
124 |
In the first scatterplot we display PapersWithCode tasks that are colored by area.
|
125 |
"""
|
126 |
|
127 |
+
|
128 |
def load_embeddings_description():
|
129 |
return
|
130 |
+
|
131 |
+
|
132 |
## main
|
133 |
repos_df = load_repo_df(AppConfig.repo_representations_path)
|
134 |
repos = list(repos_df["repo_name"].unique())
|
|
|
147 |
|
148 |
descriptions = {
|
149 |
"intro": load_embeddings_intro_description(),
|
150 |
+
"Basic representations": """Now we show the embeddings of tasks and repos, using various texts or representations.
|
|
|
151 |
|
152 |
The fact that selected code and/or dependency signatures (containing mostly repo's file names) are dissimilar from task names
|
153 |
should not be surprising. For our problem this illustrates the fact that these representations work poorly for retrieval.
|
|
|
162 |
|
163 |
Below we can also see embeddings of task names with MPNet after dimensionality reduction with UMAP.
|
164 |
MPNet, a sentence-transformer model, the embeddings visibly separate tasks by area.
|
165 |
+
""",
|
166 |
}
|
167 |
|
168 |
with gr.Blocks() as demo:
|
169 |
+
with gr.Tab("Explore Dependency Graphs"):
|
170 |
+
graph_tab()
|
171 |
with gr.Tab("Explore Repository Embeddings"):
|
172 |
|
173 |
tab_elems = [
|
|
|
176 |
gr.Plot(embedding_visualizer.make_task_area_scatterplot()),
|
177 |
]
|
178 |
|
179 |
+
embedding_plots = embedding_visualizer.make_embedding_plots(
|
180 |
+
color_col="representation"
|
181 |
+
)
|
182 |
+
for plot_name in [
|
183 |
+
"Basic representations",
|
184 |
+
"Dependency graph based representations",
|
185 |
+
"READMEs",
|
186 |
+
]:
|
187 |
tab_elems.append(gr.Markdown(f"## {plot_name}"))
|
188 |
if descriptions.get(plot_name):
|
189 |
tab_elems.append(gr.Markdown(descriptions[plot_name]))
|
graph_visualizations.py
ADDED
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import networkx as nx
|
4 |
+
import tqdm
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
import plotly.express as px
|
7 |
+
from datasets import load_dataset
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
|
11 |
+
def load_graph_from_edge_df(
|
12 |
+
repo_name: str,
|
13 |
+
edge_df: pd.DataFrame,
|
14 |
+
) -> nx.DiGraph:
|
15 |
+
"""
|
16 |
+
Create a NetworkX directed graph from the dependency edge DataFrame.
|
17 |
+
Uses all edge types for centrality calculation.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
repo_name: Name of the repository to filter by
|
21 |
+
edge_df: DataFrame with columns [repo_name, target, source, edge_type]
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
NetworkX DiGraph with edges and edge attributes
|
25 |
+
"""
|
26 |
+
G = nx.DiGraph()
|
27 |
+
repo_edge_df = edge_df[edge_df["repo_name"] == repo_name]
|
28 |
+
|
29 |
+
# Add edges with attributes (all edge types for accurate centrality)
|
30 |
+
for _, row in repo_edge_df.iterrows():
|
31 |
+
source = row["source"]
|
32 |
+
target = row["target"]
|
33 |
+
edge_type = row["edge_type"]
|
34 |
+
|
35 |
+
# Add edge with attributes
|
36 |
+
G.add_edge(source, target, edge_type=edge_type, repo_name=repo_name)
|
37 |
+
|
38 |
+
return G
|
39 |
+
|
40 |
+
|
41 |
+
def init_graphs():
|
42 |
+
"""Initialize graphs from dependency data on startup"""
|
43 |
+
print("Loading dependency data from HuggingFace Hub...")
|
44 |
+
dataset = load_dataset(
|
45 |
+
"lambdaofgod/pwc_github_search",
|
46 |
+
data_files="sample_repo_dependency_records.parquet",
|
47 |
+
)
|
48 |
+
graph_dependencies_df = dataset["train"].to_pandas()
|
49 |
+
|
50 |
+
repos = graph_dependencies_df["repo_name"].unique()
|
51 |
+
|
52 |
+
graphs = dict()
|
53 |
+
print(f"Loading {len(repos)} graphs...")
|
54 |
+
for repo_name in tqdm.tqdm(repos):
|
55 |
+
graph = load_graph_from_edge_df(repo_name, graph_dependencies_df)
|
56 |
+
graphs[repo_name] = graph
|
57 |
+
|
58 |
+
print("Graphs loaded successfully!")
|
59 |
+
return graphs
|
60 |
+
|
61 |
+
|
62 |
+
def get_node_type(node, graph):
|
63 |
+
"""Determine node type based on edge relationships"""
|
64 |
+
node_str = str(node)
|
65 |
+
|
66 |
+
# Check if it's a repository (has '/' and is source of repo-file edges)
|
67 |
+
if "/" in node_str:
|
68 |
+
for _, _, data in graph.edges(node, data=True):
|
69 |
+
if data.get("edge_type") == "repo-file":
|
70 |
+
return "repository"
|
71 |
+
|
72 |
+
# Check if it's a file (target of repo-file edges or source of file-* edges)
|
73 |
+
if ".py" in node_str:
|
74 |
+
# Check if it's target of repo-file edge
|
75 |
+
for source, target, data in graph.edges(data=True):
|
76 |
+
if target == node and data.get("edge_type") == "repo-file":
|
77 |
+
return "file"
|
78 |
+
# Check if it's source of file-* edges
|
79 |
+
for _, _, data in graph.edges(node, data=True):
|
80 |
+
edge_type = data.get("edge_type", "")
|
81 |
+
if edge_type.startswith("file-"):
|
82 |
+
return "file"
|
83 |
+
|
84 |
+
# Check if it's an import (target of file-import or source/target of import-import)
|
85 |
+
for source, target, data in graph.edges(data=True):
|
86 |
+
edge_type = data.get("edge_type", "")
|
87 |
+
if (target == node and edge_type == "file-import") or (
|
88 |
+
edge_type == "import-import" and (source == node or target == node)
|
89 |
+
):
|
90 |
+
return "import"
|
91 |
+
|
92 |
+
# Check if it's a class (target of file-class edges or source of class-method/inheritance)
|
93 |
+
for source, target, data in graph.edges(data=True):
|
94 |
+
edge_type = data.get("edge_type", "")
|
95 |
+
if target == node and edge_type == "file-class":
|
96 |
+
return "class"
|
97 |
+
if source == node and edge_type in ["class-method", "inheritance"]:
|
98 |
+
return "class"
|
99 |
+
|
100 |
+
# Check if it's a function (target of file-function or function-function edges)
|
101 |
+
for source, target, data in graph.edges(data=True):
|
102 |
+
edge_type = data.get("edge_type", "")
|
103 |
+
if target == node and edge_type == "file-function":
|
104 |
+
return "function"
|
105 |
+
if edge_type == "function-function" and (source == node or target == node):
|
106 |
+
return "function"
|
107 |
+
|
108 |
+
# Check if it's a method (target of class-method edges)
|
109 |
+
for source, target, data in graph.edges(data=True):
|
110 |
+
if target == node and data.get("edge_type") == "class-method":
|
111 |
+
return "method"
|
112 |
+
|
113 |
+
# Default fallback
|
114 |
+
return "unknown"
|
115 |
+
|
116 |
+
|
117 |
+
def create_interactive_plotly_graph(
|
118 |
+
repo_name, graph, layout_type="spring", selected_edge_types=None
|
119 |
+
):
|
120 |
+
"""Create an interactive Plotly graph with node names and edge types"""
|
121 |
+
if selected_edge_types is None:
|
122 |
+
selected_edge_types = set()
|
123 |
+
# Get node positions using selected layout
|
124 |
+
if layout_type == "spring":
|
125 |
+
pos = nx.spring_layout(graph, k=1, iterations=100)
|
126 |
+
elif layout_type == "circular":
|
127 |
+
pos = nx.circular_layout(graph)
|
128 |
+
elif layout_type == "kamada_kawai":
|
129 |
+
pos = nx.kamada_kawai_layout(graph)
|
130 |
+
elif layout_type == "fruchterman_reingold":
|
131 |
+
pos = nx.fruchterman_reingold_layout(graph, k=1, iterations=100)
|
132 |
+
elif layout_type == "shell":
|
133 |
+
pos = nx.shell_layout(graph)
|
134 |
+
elif layout_type == "spectral":
|
135 |
+
pos = nx.spectral_layout(graph)
|
136 |
+
elif layout_type == "planar":
|
137 |
+
try:
|
138 |
+
pos = nx.planar_layout(graph)
|
139 |
+
except nx.NetworkXException:
|
140 |
+
# Fallback to spring layout if graph is not planar
|
141 |
+
pos = nx.spring_layout(graph, k=1, iterations=50)
|
142 |
+
else:
|
143 |
+
pos = nx.spring_layout(graph, k=1, iterations=50)
|
144 |
+
|
145 |
+
# Filter edges based on selected edge types
|
146 |
+
filtered_edges = []
|
147 |
+
for edge in graph.edges(data=True):
|
148 |
+
edge_type = edge[2].get("edge_type", "unknown")
|
149 |
+
if not selected_edge_types or edge_type in selected_edge_types:
|
150 |
+
filtered_edges.append(edge)
|
151 |
+
|
152 |
+
# Extract edges with their data
|
153 |
+
edge_x = []
|
154 |
+
edge_y = []
|
155 |
+
edge_info = []
|
156 |
+
|
157 |
+
for edge in filtered_edges:
|
158 |
+
x0, y0 = pos[edge[0]]
|
159 |
+
x1, y1 = pos[edge[1]]
|
160 |
+
edge_x.extend([x0, x1, None])
|
161 |
+
edge_y.extend([y0, y1, None])
|
162 |
+
|
163 |
+
# Extract edge type from edge data
|
164 |
+
edge_type = edge[2].get("edge_type", "unknown")
|
165 |
+
edge_info.append(f"{edge[0]} → {edge[1]}<br>Type: {edge_type}")
|
166 |
+
|
167 |
+
# Create edge trace
|
168 |
+
edge_trace = go.Scatter(
|
169 |
+
x=edge_x,
|
170 |
+
y=edge_y,
|
171 |
+
line=dict(width=1, color="#888"),
|
172 |
+
hoverinfo="none",
|
173 |
+
mode="lines",
|
174 |
+
name="Edges",
|
175 |
+
)
|
176 |
+
|
177 |
+
# Define color scheme for node types
|
178 |
+
node_type_colors = {
|
179 |
+
"repository": "#FF6B6B", # Red
|
180 |
+
"file": "#4ECDC4", # Teal
|
181 |
+
"class": "#45B7D1", # Blue
|
182 |
+
"function": "#96CEB4", # Green
|
183 |
+
"method": "#FFEAA7", # Yellow
|
184 |
+
"import": "#FF9F43", # Orange
|
185 |
+
"unknown": "#DDA0DD", # Plum
|
186 |
+
}
|
187 |
+
|
188 |
+
# Get nodes that are connected by filtered edges
|
189 |
+
connected_nodes = set()
|
190 |
+
for edge in filtered_edges:
|
191 |
+
connected_nodes.add(edge[0])
|
192 |
+
connected_nodes.add(edge[1])
|
193 |
+
|
194 |
+
# If no edges are selected, show all nodes
|
195 |
+
if not selected_edge_types:
|
196 |
+
connected_nodes = set(graph.nodes())
|
197 |
+
|
198 |
+
# Calculate degree statistics for opacity normalization
|
199 |
+
degrees = [graph.degree(node) for node in connected_nodes]
|
200 |
+
min_degree = min(degrees) if degrees else 0
|
201 |
+
max_degree = max(degrees) if degrees else 1
|
202 |
+
degree_range = max_degree - min_degree if max_degree > min_degree else 1
|
203 |
+
|
204 |
+
# Extract node information
|
205 |
+
node_x = []
|
206 |
+
node_y = []
|
207 |
+
node_text = []
|
208 |
+
node_info = []
|
209 |
+
node_colors = []
|
210 |
+
node_types = []
|
211 |
+
node_sizes = []
|
212 |
+
node_opacities = []
|
213 |
+
|
214 |
+
for node in connected_nodes:
|
215 |
+
x, y = pos[node]
|
216 |
+
node_x.append(x)
|
217 |
+
node_y.append(y)
|
218 |
+
|
219 |
+
# Determine node type
|
220 |
+
node_type = get_node_type(node, graph)
|
221 |
+
node_types.append(node_type)
|
222 |
+
|
223 |
+
# Calculate node size based on degree
|
224 |
+
degree = graph.degree(node)
|
225 |
+
# Scale size between 8 and 25 based on degree
|
226 |
+
size = max(8, min(25, 8 + degree * 1.5))
|
227 |
+
node_sizes.append(size)
|
228 |
+
|
229 |
+
# Calculate opacity based on normalized degree (0.3 to 1.0)
|
230 |
+
normalized_degree = (degree - min_degree) / degree_range
|
231 |
+
opacity = 0.3 + (normalized_degree * 0.7) # Range from 0.3 to 1.0
|
232 |
+
node_opacities.append(opacity)
|
233 |
+
|
234 |
+
# Truncate long node names for display
|
235 |
+
display_name = str(node)
|
236 |
+
if len(display_name) > 30:
|
237 |
+
display_name = display_name[:27] + "..."
|
238 |
+
|
239 |
+
node_text.append(display_name)
|
240 |
+
node_info.append(
|
241 |
+
f"Node: {node}<br>Type: {node_type}<br>Degree: {graph.degree(node)}"
|
242 |
+
)
|
243 |
+
|
244 |
+
# Color nodes by type
|
245 |
+
node_colors.append(node_type_colors.get(node_type, node_type_colors["unknown"]))
|
246 |
+
|
247 |
+
# Create node trace
|
248 |
+
node_trace = go.Scatter(
|
249 |
+
x=node_x,
|
250 |
+
y=node_y,
|
251 |
+
mode="markers+text",
|
252 |
+
hoverinfo="text",
|
253 |
+
hovertext=node_info,
|
254 |
+
text=node_text,
|
255 |
+
textposition="middle center",
|
256 |
+
textfont=dict(size=8, color="rgba(0,0,0,0.6)"), # Semi-transparent text
|
257 |
+
marker=dict(
|
258 |
+
size=node_sizes,
|
259 |
+
color=node_colors,
|
260 |
+
line=dict(width=1, color="black"),
|
261 |
+
opacity=node_opacities, # Variable opacity based on degree
|
262 |
+
),
|
263 |
+
name="Nodes",
|
264 |
+
)
|
265 |
+
|
266 |
+
# Create the figure
|
267 |
+
fig = go.Figure(data=[edge_trace, node_trace])
|
268 |
+
|
269 |
+
fig.update_layout(
|
270 |
+
title=dict(
|
271 |
+
text=f"Interactive Dependency Graph: {repo_name}", font=dict(size=16)
|
272 |
+
),
|
273 |
+
showlegend=True,
|
274 |
+
hovermode="closest",
|
275 |
+
margin=dict(b=20, l=5, r=5, t=40),
|
276 |
+
annotations=[
|
277 |
+
dict(
|
278 |
+
text="Hover over nodes for details. Zoom and pan to explore.",
|
279 |
+
showarrow=False,
|
280 |
+
xref="paper",
|
281 |
+
yref="paper",
|
282 |
+
x=0.005,
|
283 |
+
y=-0.002,
|
284 |
+
)
|
285 |
+
],
|
286 |
+
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
287 |
+
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
288 |
+
plot_bgcolor="white",
|
289 |
+
)
|
290 |
+
|
291 |
+
return fig
|
292 |
+
|
293 |
+
|
294 |
+
def get_available_edge_types(graph):
|
295 |
+
"""Get all unique edge types in the graph"""
|
296 |
+
edge_types = set()
|
297 |
+
for _, _, data in graph.edges(data=True):
|
298 |
+
edge_type = data.get("edge_type", "unknown")
|
299 |
+
edge_types.add(edge_type)
|
300 |
+
|
301 |
+
# Define preferred order
|
302 |
+
preferred_order = [
|
303 |
+
"repo-file",
|
304 |
+
"file-class",
|
305 |
+
"file-import",
|
306 |
+
"inheritance",
|
307 |
+
"import-import",
|
308 |
+
"file-function",
|
309 |
+
"class-method",
|
310 |
+
"function-function",
|
311 |
+
]
|
312 |
+
|
313 |
+
# Sort edge types according to preferred order, then alphabetically for any others
|
314 |
+
ordered_types = []
|
315 |
+
for edge_type in preferred_order:
|
316 |
+
if edge_type in edge_types:
|
317 |
+
ordered_types.append(edge_type)
|
318 |
+
edge_types.remove(edge_type)
|
319 |
+
|
320 |
+
# Add any remaining edge types alphabetically
|
321 |
+
ordered_types.extend(sorted(list(edge_types)))
|
322 |
+
|
323 |
+
return ordered_types
|
324 |
+
|
325 |
+
|
326 |
+
def visualize_graph(
|
327 |
+
repo_name, graphs_dict, layout_type="spring", selected_edge_types=None
|
328 |
+
):
|
329 |
+
"""Visualize the selected repository's graph"""
|
330 |
+
if repo_name not in graphs_dict:
|
331 |
+
return None, f"Repository '{repo_name}' not found in loaded graphs."
|
332 |
+
|
333 |
+
if repo_name is None:
|
334 |
+
return None, "Please select a repository."
|
335 |
+
|
336 |
+
graph = graphs_dict[repo_name]
|
337 |
+
|
338 |
+
# Create interactive Plotly graph
|
339 |
+
fig = create_interactive_plotly_graph(
|
340 |
+
repo_name, graph, layout_type, selected_edge_types
|
341 |
+
)
|
342 |
+
|
343 |
+
# Generate statistics for filtered graph
|
344 |
+
edge_types = {}
|
345 |
+
filtered_edge_count = 0
|
346 |
+
for _, _, data in graph.edges(data=True):
|
347 |
+
edge_type = data.get("edge_type", "unknown")
|
348 |
+
if not selected_edge_types or edge_type in selected_edge_types:
|
349 |
+
edge_types[edge_type] = edge_types.get(edge_type, 0) + 1
|
350 |
+
filtered_edge_count += 1
|
351 |
+
|
352 |
+
edge_type_summary = "\n".join(
|
353 |
+
[f" {edge_type}: {count}" for edge_type, count in edge_types.items()]
|
354 |
+
)
|
355 |
+
|
356 |
+
# Generate node type statistics for visible nodes
|
357 |
+
if selected_edge_types:
|
358 |
+
# Get nodes connected by filtered edges
|
359 |
+
connected_nodes = set()
|
360 |
+
for source, target, data in graph.edges(data=True):
|
361 |
+
edge_type = data.get("edge_type", "unknown")
|
362 |
+
if edge_type in selected_edge_types:
|
363 |
+
connected_nodes.add(source)
|
364 |
+
connected_nodes.add(target)
|
365 |
+
else:
|
366 |
+
connected_nodes = set(graph.nodes())
|
367 |
+
|
368 |
+
node_types = {}
|
369 |
+
for node in connected_nodes:
|
370 |
+
node_type = get_node_type(node, graph)
|
371 |
+
node_types[node_type] = node_types.get(node_type, 0) + 1
|
372 |
+
|
373 |
+
node_type_summary = "\n".join(
|
374 |
+
[f" {node_type}: {count}" for node_type, count in node_types.items()]
|
375 |
+
)
|
376 |
+
|
377 |
+
stats = f"""Repository: {repo_name}
|
378 |
+
Visible nodes: {len(connected_nodes)} / {graph.number_of_nodes()}
|
379 |
+
Visible edges: {filtered_edge_count} / {graph.number_of_edges()}
|
380 |
+
|
381 |
+
Visible node types:
|
382 |
+
{node_type_summary}
|
383 |
+
|
384 |
+
Visible edge types:
|
385 |
+
{edge_type_summary}
|
386 |
+
"""
|
387 |
+
|
388 |
+
return fig, stats
|
389 |
+
|
390 |
+
|
391 |
+
def graph_tab():
|
392 |
+
gr.Markdown("# Dependency Graph Visualization")
|
393 |
+
gr.Markdown("Select a repository to visualize its dependency graph.")
|
394 |
+
graphs_dict = init_graphs()
|
395 |
+
repo_names = list(graphs_dict.keys())
|
396 |
+
|
397 |
+
def plot_selected_repo(repo_name, layout_type, *edge_type_checkboxes):
|
398 |
+
# Convert checkbox values to selected edge types
|
399 |
+
edge_types = (
|
400 |
+
get_available_edge_types(graphs_dict[repo_name])
|
401 |
+
if repo_name in graphs_dict
|
402 |
+
else []
|
403 |
+
)
|
404 |
+
selected_edge_types = set()
|
405 |
+
for i, is_selected in enumerate(edge_type_checkboxes):
|
406 |
+
if is_selected and i < len(edge_types):
|
407 |
+
selected_edge_types.add(edge_types[i])
|
408 |
+
|
409 |
+
fig, stats = visualize_graph(
|
410 |
+
repo_name, graphs_dict, layout_type, selected_edge_types
|
411 |
+
)
|
412 |
+
return fig, stats
|
413 |
+
|
414 |
+
def update_edge_checkboxes(repo_name):
|
415 |
+
"""Update edge type checkboxes when repository changes"""
|
416 |
+
if repo_name not in graphs_dict:
|
417 |
+
return [gr.Checkbox(visible=False)] * 8
|
418 |
+
|
419 |
+
edge_types = get_available_edge_types(graphs_dict[repo_name])
|
420 |
+
checkboxes = []
|
421 |
+
|
422 |
+
# Create checkboxes for each edge type (up to 8)
|
423 |
+
for i in range(8):
|
424 |
+
if i < len(edge_types):
|
425 |
+
edge_type = edge_types[i]
|
426 |
+
# function-function should be unchecked by default
|
427 |
+
default_value = edge_type != "function-function"
|
428 |
+
checkboxes.append(
|
429 |
+
gr.Checkbox(label=edge_type, value=default_value, visible=True)
|
430 |
+
)
|
431 |
+
else:
|
432 |
+
checkboxes.append(gr.Checkbox(visible=False))
|
433 |
+
|
434 |
+
return checkboxes
|
435 |
+
|
436 |
+
# Get initial edge types for the first repository
|
437 |
+
initial_edge_types = []
|
438 |
+
if repo_names:
|
439 |
+
initial_edge_types = get_available_edge_types(graphs_dict[repo_names[0]])
|
440 |
+
|
441 |
+
with gr.Row():
|
442 |
+
with gr.Column(scale=1):
|
443 |
+
repo_dropdown = gr.Dropdown(
|
444 |
+
choices=repo_names,
|
445 |
+
label="Select Repository",
|
446 |
+
value=repo_names[0] if repo_names else None,
|
447 |
+
)
|
448 |
+
|
449 |
+
layout_dropdown = gr.Dropdown(
|
450 |
+
choices=[
|
451 |
+
("Spring Layout (Force-directed)", "spring"),
|
452 |
+
("Circular Layout", "circular"),
|
453 |
+
("Kamada-Kawai Layout", "kamada_kawai"),
|
454 |
+
("Fruchterman-Reingold Layout", "fruchterman_reingold"),
|
455 |
+
("Shell Layout", "shell"),
|
456 |
+
("Spectral Layout", "spectral"),
|
457 |
+
("Planar Layout", "planar"),
|
458 |
+
],
|
459 |
+
label="Select Layout",
|
460 |
+
value="spring",
|
461 |
+
)
|
462 |
+
|
463 |
+
gr.Markdown("### Edge Type Filters")
|
464 |
+
gr.Markdown("Select which edge types to display:")
|
465 |
+
|
466 |
+
# Create checkboxes for edge types with initial values
|
467 |
+
edge_checkboxes = []
|
468 |
+
for i in range(8): # Support up to 8 edge types
|
469 |
+
if i < len(initial_edge_types):
|
470 |
+
checkbox = gr.Checkbox(
|
471 |
+
label=initial_edge_types[i], value=True, visible=True
|
472 |
+
)
|
473 |
+
else:
|
474 |
+
checkbox = gr.Checkbox(label=f"Edge Type {i+1}", visible=False)
|
475 |
+
edge_checkboxes.append(checkbox)
|
476 |
+
|
477 |
+
visualize_btn = gr.Button("Visualize Graph", variant="primary")
|
478 |
+
|
479 |
+
stats_text = gr.Textbox(
|
480 |
+
label="Graph Statistics", lines=6, interactive=False
|
481 |
+
)
|
482 |
+
|
483 |
+
with gr.Column(scale=2):
|
484 |
+
graph_plot = gr.Plot(label="Interactive Dependency Graph")
|
485 |
+
|
486 |
+
# Set up event handlers
|
487 |
+
all_inputs = [repo_dropdown, layout_dropdown] + edge_checkboxes
|
488 |
+
|
489 |
+
visualize_btn.click(
|
490 |
+
fn=plot_selected_repo,
|
491 |
+
inputs=all_inputs,
|
492 |
+
outputs=[graph_plot, stats_text],
|
493 |
+
)
|
494 |
+
|
495 |
+
# Update checkboxes when repository changes
|
496 |
+
repo_dropdown.change(
|
497 |
+
fn=update_edge_checkboxes,
|
498 |
+
inputs=[repo_dropdown],
|
499 |
+
outputs=edge_checkboxes,
|
500 |
+
)
|
501 |
+
|
502 |
+
# Auto-visualize on dropdown change
|
503 |
+
repo_dropdown.change(
|
504 |
+
fn=plot_selected_repo,
|
505 |
+
inputs=all_inputs,
|
506 |
+
outputs=[graph_plot, stats_text],
|
507 |
+
)
|
508 |
+
|
509 |
+
# Auto-visualize on layout change
|
510 |
+
layout_dropdown.change(
|
511 |
+
fn=plot_selected_repo,
|
512 |
+
inputs=all_inputs,
|
513 |
+
outputs=[graph_plot, stats_text],
|
514 |
+
)
|
515 |
+
|
516 |
+
# Auto-visualize on checkbox changes
|
517 |
+
for checkbox in edge_checkboxes:
|
518 |
+
checkbox.change(
|
519 |
+
fn=plot_selected_repo,
|
520 |
+
inputs=all_inputs,
|
521 |
+
outputs=[graph_plot, stats_text],
|
522 |
+
)
|