File size: 1,470 Bytes
6a2e815
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import gradio as gr

from peft import PeftModel, PeftConfig
from transformers import MistralForCausalLM, TextIteratorStreamer, AutoTokenizer, BitsAndBytesConfig
from time import sleep
from threading import Thread
from torch import float16

config = PeftConfig.from_pretrained("lang-uk/dragoman")
quant_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=float16,
    bnb_4bit_use_double_quant=False,
)

model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", 
    quantization_config=quant_config,
    device_map="auto",)
model = PeftModel.from_pretrained(model, "lang-uk/dragoman")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", use_fast=False, add_bos_token=False)

def translate(input_text):
    # iteratively generate
    input_text = input_text.strip()
    input_text = f"[INST] {input_text} [/INST]"
    inputs = tokenizer([input_text], return_tensors="pt")

    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=200)

    thread = Thread(target=model.generate, kwargs=generation_kwargs)

    thread.start()
    
    generated_text = ""
    for new_text in streamer:
        generated_text += new_text
        yield generated_text


iface = gr.Interface(fn=translate, inputs="text", outputs="text", examples=[["who holds this neighborhood?"]])
iface.launch()